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Chapter 1

Introduction

Cosmology, the study of the overall composition and history of the uni-
verse, is currently in the enviable position of having a well-tested standard
model that agrees with all observations, while relying only a low num-
ber of adjustable parameters1. According to this model, which is known
as ΛCDM or the “concordance model”, the universe started out in an ex-
tremely hot and dense state called the Big Bang some 13.8 billion years ago.
This was almost immediately followed by a phase of extremely rapid ex-
pansion, called inflation.

Figure 1.1: A timeline of the universe, courtesy of the WMAP science team.
Quantum fluctuations are created during inflations, resulting in the CMB
fluctuations (afterglow light pattern) and the later formation of stars, galax-
ies and other structures.

1For a thorough introduction to this topic, see for example [1].
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10 CHAPTER 1. INTRODUCTION

During inflation, the size of the universe increased exponentially by at
least a factor of 1026, leaving the universe in an almost perfectly flat and
uniform state, with small fluctuations with approximately the same ampli-
tude on all length-scales2.

After this, the universe continued expanding much more slowly, even-
tually cooling down enough for protons and neutrons, then light atomic
nuclei, and finally atoms to form. The latter happened about 370 000 years
after the Big Bang, when the temperature of the universe had fallen to about
3000 K. The formation of atoms turned the plasma that had filled the uni-
verse until then into a neutral gas, making the universe transparent for the
first time. Due to the finite speed of light, this event, called “recombina-
tion”3, is still visible today as an apparent surface, called the surface of last
scattering, some 13.8 billion light-years away4.

Up to this point, the fluctuations from inflation had been gradually
growing under the influence of gravity, and at the time of recombination,
the universe was inhomogeneous at the level of 1:100 000. In the following
billions of years until today, the fluctuations continued to grow, eventually
becoming dense enough to form first stars and then galaxies, followed by
even larger structures such as clusters of galaxies.

Quantitatively, the model is described by the ten parameters in table 1.1,
which can be summarized as the age, expansion speed and density of the
universe; the amplitude and scale dependence of the fluctuations; and the
time of recombination and another significant event later in the history of
the universe called reionization.

This concordance model is supported by a diverse set of observations,
including

• the relationship between the redshift and magnitude of supernova
explosions, which can be used to map out the expansion history of
the universe.

• the distribution of galaxies on large scales, from which information
about the fluctuations can be extracted.

• the chemical composition of the universe, which provides informa-
tion about the baryon density and expansion speed during the early
universe.

2It also had the effect of diluting the particles present in the universe before inflation into
irrelevance. At the end of inflation, the universe is re-populated with particles created from
the decay of the field(s) responsible for driving inflation.

3Though “combination” would have been a more appropriate name, as this is the first
time nuclei and electrons combined to form atoms.

4In light travel distance, one of several possible ways of measuring distances in the uni-
verse.
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Parameter Value Name
t0 13.78± 0.11 Gyr Age of the universe
H0 69.9± 1.3km/s/Mpc Hubble parameter
Ωb 0.0485± 0.0026 Baryon density
Ωc 0.244± 0.016 Dark matter density
ΩΛ 0.708± 0.0016 Dark energy density

σ8 0.811± 0.023 Fluctuation amplitude
ns 0.967± 0.014 Spectral index
r < 0.2 Tensor-to-scalar ratio

z∗ 1020.3± 1.3 Redshift at last decoupling
τ 0.086± 0.014 Optical depth of reionization

Table 1.1: The 10 parameters of the ΛCDM model, and current bounds
on their values, based on a combination of WMAP 7-year data, supernova
observations and galaxy surveys.

However, the most sensitive test of the model currently available is radi-
ation reaching us from the surface of last scattering, called the cosmic mi-
crowave background (CMB). We observe the CMB as perfect black-body
radiation corresponding to a temperature of 2.725 K, a temperature which
is nearly uniform in all directions on the sky5. But since the CMB is an
image of the surface of last scattering, it cannot be completely uniform; it
must contain the faint fluctuations that were present in the universe at that
time.

1.1 The CMB anisotropies

These anisotropies in the CMB were first detected by the COBE satellite
in 1992 [2], and were later mapped out in more detail by several other ex-
periments, including the WMAP satellite [3, 4, 5, 6] (see fig. 1.2). The pri-
mordial fluctuations produced during inflation are ultimately sourced by
random quantum fluctuations, which are expected to follow a statistically
isotropic and homogeneous6 Gaussian distribution, and these properties
are inherited by the temperature fluctuations at the surface of last scatter-
ing. The precise position and value of each positive and negative fluctua-
tion is therefore not of cosmological interest, but the statistical properties

5The observed temperature is a factor of ∼ 1000 lower than the temperature at recombi-
nation. This fall in temperature between the time the radiation was emitted and observed is
expected from general relativity, which predicts that the wavelength of photons will grow
proportionally with the expansion of the universe.

6That is, while each realization of the random field is anisotropic and inhomogeneous,
they will not systematically prefer any position or direction.
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Figure 1.2: The WMAP 7-year ILC map of the CMB temperature
anisotropies. At this resolution, the fluctuations have a typical amplitude
of ∼ 100µK. The faint horizontal artifacts in the middle of the map are due
to contamination from our own galaxy.

of the fluctuation field as a whole are, as they contain information not only
about the conditions that sourced them during inflation, but also about the
physical conditions during the 370 000 year period between inflation and
recombination.

A statistically isotropic Gaussian random field on the sphere has the
convenient property that its statistical properties can be completely de-
scribed in terms of the angular power spectrum, Cl , which is given by

Cl =〈|alm|2〉 alm =
∫

Y∗lm(θ̂)∆T(θ̂)dΩ, (1.1)

where alm are the coefficients of the decomposition of the fluctuation field
∆T(θ̂) in terms of the spherical harmonics7 Ylm(θ̂). The CMB temperature
fluctuation power spectrum as measured by the WMAP satellite is com-
pared to the ΛCDM best fit in figure 1.3. The fit is excellent, despite the
much greater number of data points than model parameters. This lends
confidence to the idea that ΛCDM is correct, or at least a very good ap-
proximation to reality.

For the most part, the ΛCDM model builds on the two well-tested theo-
ries general relativity and the standard model of particle physics, which to-
gether form the status quo of our understanding of the particles and forces

7The spherical harmonics are eigenvectors of the angular part of the ∇2 operator. They
are analogues to the normal harmonic functions, and form an orthogonal basis set on the
sphere.
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Figure 1.3: The power spectrum of the CMB temperature fluctuations as
measured by the WMAP satellite, compared to the best-fit ΛCDM model.

that exist. However, ΛCDM also requires a few ingredients which go be-
yond these two, and its impressive fit to observations gives good reason to
believe that these are actually real. The new ingredients are:

Dark energy An unknown form of energy with negative pressure and re-
pulsive gravity, currently making up 71% of the energy density in the
universe. It is needed to explain the current accelerated expansion of
the universe.

Dark matter An unknown form of matter which interacts very weakly with
normal matter and radiation, and which currently makes up 24% of
the energy density of the universe.

Inflation The period of extremely rapid expansion that sets up the fluctu-
ations in the early universe. Possibly related to dark energy.

Of these, the most speculative and poorly measured is inflation, despite its
central place in the theory. It is believed to have happened at an energy
scale of up to ∼ 1016GeV [7], which puts it far beyond the reach of fore-
seeable particle experiments on Earth. However, such a high energy scale
would also result in the production of a significant amount of tensor fluc-
tuations (gravitational waves) during inflation, which would be detectable
in the CMB power spectrum if present in sufficient amounts. Thus, the
CMB power spectrum is a unique opportunity for probing physics at these
ultra-high energy scales.

The amplitude of the primordial waves is parameterized by the tensor-
to-scalar ratio r, which is defined as the ratio of the primordial tensor and
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scalar power at the scale with wavenumber k = 0.05/Mpc. So far, no tensor
perturbations have been detected, so r is consistent with zero, but with a
quite large confidence interval: r < 0.2 [8]. This bound is based on the
effect of tensor perturbations on the CMB temperature power spectrum,
and derives most of its significance from the multipoles l < 10, which are
fundamentally limited in sensitivity by cosmic variance8. It is therefore not
possible to significantly improve on this bound using the CMB temperature
fluctuations.

However, the CMB, being electromagnetic radiation, has more degrees
of freedom than just its temperature – it can also be polarized, and the CMB
polarization has no such fundamental limit on the ability to detect tensor
modes.

1.2 Polarization

General electromagnetic radiation can be expressed as a linear combination
of plane wave solutions of Maxwell’s equation, which take the form

~E(~r, t) =|~E|
cosθeiαx

sinθeiαy

0

 ei(kz−ωt) (1.2)

~B(~r, t) =c−1~k× ~E(~r, t), (1.3)

for a wave travelling in the~z direction, where ~E and ~B are the electric and
magnetic field strengths,~r and t are the position and time,θ is the linear po-
larization angle and αx, αy are the polarization phase angles [9]. Solutions
with αy = αx are called linear polarization; αy = αx ± π

2 gives rise to cir-
cular polarization, and other choices are called elliptical polarization, and
can be described as linear combinations of linear and circular polarization.

No choice of these parameters correspond to unpolarized light. Instead,
unpolarized light can be built up as a linear combination of plane waves
with different phases and polarization angles. This results in light with
polarization changing rapidly over short time scales, adding up to a zero
net polarization. In general, it is also possible that the polarization does not
completely cancel out, resulting in in partially polarized light.

1.2.1 Stokes parameters

A useful way of characterizing these possibilities is in terms of the Stokes
parameters ~S = (I, Q, U, V)T, where I ≡ |Ex|2 + |Ey|2, Q ≡ |Ex|2 − |Ey|2,

8Cosmic variance refers to the uncertainty inherent in only having a single location in a
single universe from which to observe. For example, there are only 5 linearly independent
quadrupoles on the sky, which sets a lower limit on the uncertainty of C2, independently of
instrumental noise, etc.
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Figure 1.4: Illustration of the linear polarization Stokes parameters Q and
U, and the circular polarization parameter V. Stokes parameters are useful
due to their linearity when combining light from multiple sources and the
ease of measuring them, but they are arbitrary in the sense that they depend
on the orientation of the coordinate system. The E and B decomposition
provide a more natural alternative to Q and U. Based on illustration by
Dan Moulton.

U = 2Re(ExE∗y) and V ≡ 2Im(ExE∗y). These represent respectively the total
intensity of the radiation9, the linear polarization along the x (positive) and
y (negative) axes, linear polarization along the x+y (positive) and x-y (neg-
ative) direction, and the right-handed (positive) and left-handed (negative)
circular polarization, as illustrated in figure 1.4.

Under a rotation of the coordinate system, I and V are unchanged,
while (Q, U) rotates as a spin 2 quantity. That is, under a rotationψ around
the z axis of the local coordinate system,(

Q
U

)
→
(

Q′
U′

)
=
(

cos(2ψ)Q− sin(2ψ)U
cos(2ψ)U + sin(2ψ)Q

)
. (1.4)

Compared to a description in terms of polarization fraction and polar-
ization angles, the Stokes parameters are useful because they add linearly
when combining radiation from multiple sources. They are also easy to
measure compared to other parameterizations. However, they are not the

9The CMB has a black-body spectrum, and its intensity is therefore fully described by its
temperature. It is therefore usual to express the Stokes parameters in temperature units in
the context of CMB analysis, and when doing this, it is common to denote the total intensity
parameter by T instead of I.
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Figure 1.5: Left: Q/U pattern surrounding a point with positive/nega-
tive E/B. E-modes are curl-free, while B-modes are divergence-free. Right:
Q/U maps corresponding to an E-only (top) and B-only (bottom) CMB re-
alization. The scale difference between the E and B modes shown here is
due to the expected behavior of primordial B-modes, and are not intrinsic
to the definition of E and B.

most natural description of a statistically isotropic radiation field, as the
definition of the linear polarization parameters Q and U depends on the ar-
bitrary choice of an “up” direction, which results in Q rotating into U and
vice versa during a rotation of the coordinate system.

The scalar E field and the pseudo-scalar field B are rotationally invariant
alternatives to Q and U. E and B are respectively curl-free and gradient-
free, and are named in analogy to the similar properties of the electric and
magnetic field. The value of E and B in a given point can be defined as
radially-weighted averages of Qr and Ur, the Stokes Q and U parameters
as defined in a polar coordinate system centered on that point10. E and
B modes and their connection to Q and U are are shown in figure 1.5. A
pedagogical explanation can be found in [10], while [11] has an exact full-
sky treatment of the topic.

The CMB is partially polarized due to Thomson scattering, in which
photons are scattered into random directions by interaction with electrons.
As the electromagnetic field of a photon always is orthogonal to its heading,
only the component of the photon’s original polarization orthogonal to its
new direction survives the scattering. The total radiation leaving any given
point in the plasma in any given direction is then the sum of contributions
from photons incident from all directions. As illustrated in figure 1.6, this

10This makes E and B non-local: Their value in one point depends on the Q and U over
the whole sky, but with the greatest weight from nearby points. This non-locality is the
greatest disadvantage of the E-B parameterization.
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will introduce a net polarization in the outgoing radiation if the incoming
radiation has a quadrupole moment [12].

Thompson
scattering

e

Figure 1.6: Local quadrupole anisotropies introduce linear polarization at
the surface of last scattering. In this example, unpolarized light (i.e. light
with equal amounts of all types of polarization) arrives at an electron from
above and the left. The outgoing radiation inherits the horizontal polariza-
tion component from the vertically incident radiation and vice versa for the
horizontal radiation. If the horizontally and vertically incident radiation
have different intensities, the outgoing radiation will be linearly polarized.
Based on figure in [12].

There are three qualitatively different types of fluctuations present at
the surface of last scattering that can set up quadrupole moments:

Scalar perturbations , or simply density perturbations, set up temperature
anisotropies by compressing or expanding the gas.

Vector perturbations represent vortices in the velocity field, which create a
spatially varying Doppler shift in the radiation. Vector perturbations
are not expected to be present at detectable levels.

Tensor perturbations are quadrupolar distortions in the metric which di-
rectly induce a quadrupole moment in the photon field.

These perturbations introduce quadrupole moments with different symme-
tries as illustrated in figure 1.7. The symmetry of the scalar perturbations
ensure that they cannot produce B-mode polarization. Hence, since vector
perturbations are unlikely to be present, a detection of B-mode polarization
would be evidence for tensor perturbations11.

11There are some caveats to this. Firstly, E-modes may be turned into B-modes by lensing
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Figure 1.7: Illustration of the local quadrupole anisotropy induced by scalar
and tensor perturbations. Scalar perturbations correspond to m = 0 modes,
while tensor perturbations have m = ±2. The symmetry of scalar modes
prevent them from inducing B-mode polarization. Figure borrowed from
[12].

The polarization of the CMB was first detected by the DASI experiment
[15] in 2002, and has since been measured by several other experiments,
including WMAP [4], QUAD [16] and BICEP [17]. So far, only E-modes
have been detected. The lack of detection of B-modes implies a bound of
r < 0.72 [17] based on the sensitivity of current experiments. This is still
not competitive with the bounds from the temperature power spectrum,
but as detector technology improves this is very likely to change.

1.3 Detector technology

Most of the experiments currently aiming to measure B-modes are based
on polarization-sensitive bolometers. These detect radiation by the heat
it imparts on the detectors, effectively counting photons while discarding
their phase. With sufficient cooling (50 mK - 300 mK) a bolometer can be
very sensitive, approaching the limit set by the discrete nature of photons at
a few tens of µK

√
s [18]. However, the time it takes for the detector to reach

equilibrium with the incoming radiation means that bolometers measure a
slightly delayed and smeared-out signal, which must be taken into account
in post-processing.

The alternative to bolometers is coherent amplifiers, which are basically
radio antennas that measure both the amplitude and phase of the incoming

of the CMB by the matter distribution of the universe [13], and secondly, the presence of
large magnetic fields in the early universe may excite vector modes, which also produce
a B-mode signal [14]. Luckily, these effects can be decoupled from B-modes from tensor
perturbations through their different scale behavior.
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radiation. The presence of phase information makes it possible to measure
Q and U simultaneously, as well as allowing for interferometry and vari-
ous techniques for reducing systematics in hardware. However, coherent
amplifiers have a minimal noise level set by quantum noise, corresponding
to an effective temperature of Tq = hν

k log 2 ≈ νGHz
20 K [18]. This limits the sen-

sitivity of coherent amplifiers at high frequencies, with the quantum noise
becoming prohibitively high at ν & 300GHz.

For comparison, the CMB has greatest intensity at 57 GHz and is dom-
inated by synchrotron at frequencies below about 30 GHz and dust above
200 GHz or so. The quantum limit is thus not a show-stopper for CMB
observations with coherent amplifiers. In practice, neither bolometers nor
coherent amplifiers reach their theoretical sensitivities. Not only are the de-
tectors themselves imperfect; the signal itself contributes to the overall sys-
tem temperature, and for ground-based experiments this includes a large
contribution from the atmosphere. This puts a rather restrictive limit on
the sensitivity achievable with a single detector.

The most effective way of increasing overall sensitivity is therefore to
add more detectors. If the noise in each detector is uncorrelated, the sensi-
tivity will fall12 as the square root of the number of detectors. The challenge
is then to fit as many detectors as possible into a focal plane. This is an
area where bolometers used to have a big advantage due to being smaller,
cheaper and easier to mass produce, which helped make bolometers the
norm.

Recent developments in coherent amplifiers have changed this, how-
ever. With the development of a new miniaturized polarimeter-on-a-chip
design, it is finally feasible to build large arrays of coherent amplifiers with
sensitivity competitive with modern bolometer arrays.

1.4 The Q/U Imaging ExperimenT

These new detectors are being fielded for the first time in the Q/U Imaging
ExperimenT (QUIET), making it the only current B-mode experiment built
with coherent amplifier detectors. These detectors make QUIET ideally
suited for observations at frequencies below ∼ 100GHz, which includes
the frequency range where the CMB polarization spectrum attains its great-
est intensity relative to the foregrounds. Due to bolometer characteristics,
other current B-mode experiments operate above ∼ 100GHz, and this fre-
quency difference implies that QUIET will be exposed to different fore-
grounds than its competitors. This, together with different and typically
lower instrument systematics, makes QUIET’s measurements or limits on

12The sensitivity of a detector is measured in terms of its noise level, which leads to a
rather misleading terminology where lower sensitivity is better.
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B-modes an important cross-check with regards to those of bolometer ex-
periments, and also an important result in their own right.

At a fewµK, the CMB E-modes are extremely faint, and the B-modes are
at least several times fainter. Even the most sensitive detectors are therefore
strongly noise dominated, and hence a large amount of data reduction is
needed to extract a physically relevant signal from the raw telescope data.
A radiometer like QUIET is basically a nothing but a fancy radio antenna,
and the direct output from the telescope is a time-series of voltages. The
process of reducing this to an estimate of r can be separated into the fol-
lowing steps.

1. Calibration

2. Map making

3. Component separation

4. Power spectrum estimation

5. Parameter estimation

These steps conceptually follow each other, and can be thought of as a pro-
cessing pipeline, where raw time-ordered data are fed into one side, and
parameter estimates issue from the other. Following this analogy, the soft-
ware and methods responsible for these steps is collectively called an “anal-
ysis pipeline”.

This linear model should not be taken too literally: There is usually
significant feedback in a realistic pipeline, with for example the calibration
step depending on map making, or the latter 3 steps being jointly solved at
the same time.

Due to the heavy amount of processing involved in an analysis pipeline,
there is a significant risk for error which could bias or otherwise degrade
the result. Null-tests and end-to-end simulations are powerful techniques
for guarding against this, but in addition to this, it is common to have two
or more independent implementations of the pipeline. QUIET employs
two such pipelines: A pseudo-Cl based pipeline [19, 20], and a maximum
likelihood-based pipeline (see fig. 1.8). The latter was primarily developed
by a University of Oslo based team consisting of H. K. K. Eriksen, I. K. We-
hus and myself (S. K. Næss), with collaborators from Columbia University.
Most of my work in this thesis has been dedicated to the development and
application of this pipeline, which will be described in detail in the follow-
ing chapters.
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Figure 1.8: Stylized overview of QUIET’s two analysis pipelines. The ma-
jor internal steps are marked in blue and green, where green indicates a
result that is useful in its own right. “flt.” is short for “biased due to filter-
ing”, while “t. func” is short for “transfer function”. Both pipelines share
the major steps data preparation (calibration, cuts and filtering), map mak-
ing, validation and parameter estimation (power spectrum and cosmological
parameters).
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Chapter 2

Telescope and calibration

Figure 2.1: Left: QUIET is located at 67.761667◦ west, 23.028222◦ north at
5020 m elevation on the Chajnantor plateau in Chile, sharing access and
infrastructure with ALMA, ACT, APEX, etc. Right: The QUIET telescope
itself, after the installation of the upper ground screen. Map courtesy of
Google, telescope image by Joe Zuntz.

QUIET fielded its first array of coherent amplifiers from August 2008
to June 2009, consisting of 19 so-called “modules”, each made up of four
individual detectors. This array is sensitive in the Q-band (centered on
43 GHz), and consists of two parts: A polarization sensitive sub-array of
17 modules (of which 15.75 were usable) with a combined sensitivity of
69µK

√
s, and a temperature sensitive sub-array consisting of 2 modules

configured to act together as a differential detector.
A second array of 91 W-band (95 GHz) detectors was deployed from

July 2009 to December 2010, consisting of 85 polarization modules (of which
77.25 were usable) with a combined sensitivity of 85µK

√
s, and 6 tempera-

ture modules (of which 5.5 were usable) arranged in 3 differencing pairs.
Both arrays were arranged in a hexagonal pattern in the telescope’s fo-

23
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Figure 2.2: The location of QUIET’s 4 CMB patches and two galactic fore-
ground patches in galactic coordinates. The bright part of the sky indicates
the observable region based on the telescope’s location and elevation limits.
Several of QUIET’s patches overlap with those of other current or planned
experiments, including ABS [23], EBEX [24], BICEP [17] and SPIDER [25],
which are also shown. The overlaid grid is in equatorial coordinates. Fig-
ure courtesy of I. Wehus.

cal plane, with each module fed by its own feed horn, which is thus shared
by the four detectors within the module. The projected radius of both ar-
rays on the sky was 3.75 degrees, with an average beam size of 27′ for the
Q-band array and 12′ for the W-band array.

These arrays were mounted in a 1.4 m Dragonian [21, 22] telescope lo-
cated at 5080 m altitude at the Chajnantor plateau in the Atacama desert in
Chile. The telescope had three free axes: azimuth, elevation and rotation of
the focal-plane about the boresight, called the “deck” axis. In order to reach
the necessary sensitivity, observations were focused on 4 CMB-dominated
35◦ × 35◦ patches on the sky plus 2 foreground-dominated patches of sim-
ilar size (fig. 2.2). These were chosen such that at least one target was avail-
able throughout the day, allowing observations to continue 24 hours of the
day.

During normal operation of the telescope, the boresight is aimed roughly
one focal plane radius ahead of the edge of the target patch. The telescope
is then slewed backwards and forwards in azimuth at about 0.1 Hz with an
amplitude of 15 degrees at constant elevation (see figure 2.3) while the sky
drifts past, until the patch exits the telescope’s field of view. The boresight
is then repositioned, and the cycle continues. This scanning pattern ensures
that each detector spends as much time as possible looking through the at-
mosphere at constant optical depth. The temperature intensity of the atmo-
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Figure 2.3: The first 400 seconds of data from a Constant Elevation Scan
(CES). The top three panels show azimuth, elevation and the deck orienta-
tion respectively. The azimuth amplitude is about 15◦, while both elevation
and deck are almost constant, fluctuating by about 0.5” and 1′ respectively.
The fourth panel shows the demodulated readout from one of the detectors
of the 95 GHz array after decimation to 25 Hz, and the fifth panel contains
the corresponding power spectrum and the best fit 1

f -noise profile.

sphere is much greater than the CMB fluctuations QUIET aims to measure,
and is proportional the optical depth, which depends strongly on elevation
but only varies very weakly with azimuth and time. Scanning at constant
elevation means the atmosphere only shows up as a constant or very slow
drifts in the data, making it easy to filter out with a high-pass filter.

Thus, the useful data taking of the telescope comes in the form of Con-
stant Elevation Scans (CES), typically lasting about one hour, interspersed
with periods of about 5 minutes without data taking.

2.0.1 CES detection

For an ideal telescope, the list of the individual scans, their start and end
times, their target object, and type of scan would be available as one of
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the outputs from the telescope. In the case of the QUIET telescope, part of
this information is available, but after problems with miscategorized scans,
missing scans and undetected scans, this information was determined to
be incomplete and unreliable. We have therefore adopted a heuristic CES
detection based on the actual time-ordered data. The two pipelines of
the project, the maximum likelihood pipeline described here and the PCL
pipeline described in [19] each developed their own CES detection algo-
rithm, which were then refined until they reached an agreement of ∼ 95%
when ignoring small differences in the detected start- and end- times of the
CESes. I will here describe the ML pipeline’s CES detection algorithm, i.e.
the practical definition of “CES” used in this analysis.

Ideally, a CES is simply a continuous time-period where the telescope is
scanning in azimuth while keeping the elevation and deck angle constant.
However, as figure 2.3 illustrates, the hardware cannot stay totally still, and
elevation and deck fluctuate by about half a second of arc and one minute
of arc respectively during a typical CES. Furthermore, the telescope does
not spend all its time in data-taking mode. One of the output streams of
the telescope is the data taking mode, which has the value 3 during normal
data taking. Sadly, this data stream has frequent glitches where the value
departs from 3 for several seconds while data taking continues as normal.
The CES conditions above must therefore be qualified with tolerances. Fi-
nally, the Fourier methods used in the map making and filtering depends
on a constant sampling rate, so the CES detection must also ensure that the
time between samples is very close to constant during the scan.

With these problems in mind, the practical definition of a CES is: A
consecutive series of two-second chunks of data, which must each fulfil the
following criteria:

1. The deglitched data taking mode is 3

2. The elevation is within the allowed limits of [−π2 , π2 ]

3. No more than 30 consecutive samples1 have an absolute azimuth
change of less than 10−5 radians per sample.

The deglitched data taking mode here refers to the stream of data taking
modes after removing deviations from 3 of less than 3 seconds in duration.
Additionally, the series of chunks as a whole must satisfy

1. No samples must have a time-stamp that deviates by more than 3 ms
from the value expected from a constant 100 Hz sampling rate.

2. No samples can have an absolute difference between its elevation and
the average elevations of its chunk and the chunks before it of more
than 3 · 10−4 radians.

1The raw data at this stage are at 100 Hz. It is reduced to 25 Hz before the main part of
the data anlysis.
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3. Similarly, the deck angle must not deviate by more than 3 · 10−3 radi-
ans.

Whenever one of these conditions is violated, the current CES candidate is
ended and a new one started. The beginning time of each CES candidate is
then adjusted so that it is at least 1 minute later than the last phase switch
event2 that happens before the end of that candidate. Finally, the candidate
is accepted as a usable constant elevation scan if its duration is longer than
5 minutes.

Patch detection

Each of these CESes is then classified according to the objects hit during
its course. The boresight pointing for each sample of the CES is translated
to galactic coordinates3 and the angular distance d to a predefined set of
candidate objects is calculated. A hit is defined as d < R + rb + rv + r f ,
where R is an approximate radius of the object, rb is the beam 5 sigma
radius, rv is half the distance traveled during a sample and r f is the focal
plane radius. The objects hit during the CES are then sorted according
to their brightness, and the brightest one is assigned to the CES. The list
of objects considered can be seen in figure 2.1. This classification scheme
ensures that a scan of a CMB patch where the Moon happens to pass in
front of the patch registers as a usable Moon scan instead of a contaminated
CMB scan.

Implementation

The CES detection algorithm was implemented in the Fortran 90 program
ces_detect through a greedy algorithm – that is, an algorithm which tries
to maximize the length of the current CES, without considering how this
might affect the length of the next CES. This approach allows the program
to iterate through the data set in small chunks, which keeps the memory
requirements very low while still requiring only a single, sequential pass
through the data. This comes at the cost of not necessarily finding the opti-
mal CES partitioning, but any loss from this is minuscule.

Due to the size of the data set (∼ 15TB for the W-band analysis), ces_detect
benefited greatly from MPI parallelization. This was implemented by split-
ting the full data set into Nproc slices of equal size (in number of data files,
which corresponds closely to duration and data volume), each of which
are processed independently by each MPI process. CESes that span slice

2A phase switch event is a hardware event that is followed by a period of up to a minute
of unstable gain and noise levels due to temperature changes in the electronics.

3This conversion assumes an ideal mount model because arcminute precision is not nec-
essary here, and to avoid too many backwards dependencies in the pipeline.
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Name Lon. (◦) Lat. (◦) Rad. (◦) NQ
CES NW

CES

Sun 0.25 0 0

Moon 0.25 82 107

Venus 0 36 30
Jupiter 0 78 466
Mars 0 0 1
Saturn 0 3 0
Tau A 184.557 -5.784 0 18 0
RCW 38 267.927 -1.050 5 53 124

CMB-1 292.200 22.800 15 873 1584
CMB-2 243.200 -35.300 15 736 1344
CMB-3 304.600 -69.100 15 802 1059
CMB-4 7.000 -62.000 15 322 647
G-1 0.0833 -0.0667 10 189 352
G-2 329.100 0.000 15 295 568

Table 2.1: The objects considered in the automatic CES classification. These
are sorted into priority classes by brightness, separated by horizontal lines.
The location in galactic coordinates, and an approximate radius is dis-
played for the stationary objects. Shown in the last two columns are the
number of CESes identified for each object for the Q-band and W-band ob-
serving seasons.
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boundaries are handled by allowing each MPI process to finish processing
the last CES in its slice even if it extends outside that slice; the resulting
overlapping CESes from this and the next MPI task can then be automati-
cally combined in postprocessing.

2.0.2 Alternative scanning patterns

All the CMB data are collected using constant elevation scans, but some
calibration measurements employ an alternative scanning pattern called
raster scans, which are series of very small amplitude (∼ 1◦), very short
duration (∼ 1min) almost constant elevation (∆El . 0.5◦) scans. The pri-
mary target of these is the strongly polarized supernova remnant Tau A, of
which there are ∼ 104 such raster scan segments.

2.1 Detector data and noise properties

The telescope provides a 100 Hz time-stream modulated at 50 Hz for each
detector4. After correcting for a well-measured non-linearity in the detector
response and demodulating5, the result is one 50 Hz time-stream for each
detector, for a total of 72 data streams for the Q-band array and 364 for the
W-band array.

Though the detectors are quite sensitive, the CMB polarization is weaker
still, resulting in a S/N ratio per sample of about 10−3, meaning that the
data are thoroughly noise-dominated. It is therefore critical to understand
the statistical properties of the noise.

As illustrated in figure 2.4, the noise is Gaussian, but suffers from time
correlations in the form of 1/f-noise, which results in a noise power spec-
trum of the form

φ( f ) ≡σ2
0 (1 + [ f / fknee]α). (2.1)

This profile only holds within a CES; over longer periods the noise is not
stationary, and one must therefore estimate σ0, fknee andα individually for
each CES. The time dependence is illustrated for one of these parameters,
σ0, in figure 2.5.

Furthermore, the noise in each detector is not independent. The de-
tectors within a module are on average about 40% correlated, while inter-
module correlations are negligible (see figure 2.7). This means that de-
tectors within a module must be analyzed jointly rather than one-by-one,

4Two secondary data channels per detector are also provided: A “TP” stream sensitive
to the stokes I parameter, but with high noise correlations, and a noise channel. These are
not used for the main analysis, but are useful for pointing calibration.

5di = 1
2 ∑

1
j=0 m2i+ j p2i+ j, where d is the demodulated signal, m is the modulated signal

and p alternates between 1 and -1.
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Figure 2.4: The noise is well-fit by a Gaussian profile.
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Figure 2.5: The white noise floor σ0 shows a complicated time dependence
with a different pattern for each module, and to a lesser degree for the
detector within the module. The four panels show the measured σ0 values
per CES for four different detectors. Large changes inσ0 happen at discrete
events which are common for the detectors. The response to these events
differs, but is correlated between the detectors, as illustrated in figure 2.6.
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Figure 2.7: Detector white noise correlations for the 43 GHz (left) and 95
GHz (right) arrays. Within modules correlations are strong: on average
40% at 43 GHz and 37% at 95 GHz. Detectors in different modules are on
average less than 1% correlated. Only data for detectors that are actually
used in the analysis is displayed here. Unused detectors therefore show up
as gaps.

which comes as a cost in time and memory use. To complicate matters fur-
ther, figure 2.8 shows that the degree of correlation is frequency dependent,
changing gradually with frequency below 1 Hz.

All in all, these effects result in a final noise model of

Ndd′ f f ′ =
√
φd( f )φd′( f )Cdd′ fδ f f ′ , (2.2)

where Ndd′ f f ′ ≡ 〈ndf n†d′ f ′〉 = F f tNdd′tt′F−1
t′ f ′ is the frequency-domain noise

covariance matrix between detectors d and d′ and frequencies f and f ′, and
Cdd′ f is the detector correlations, and where all parameters vary from CES
to CES.

2.1.1 Noise estimation

We estimate the noise parameters in a two step process: First, we fit a 1/f
profile independently for each detector, and then we measure the corre-
lations. This is not as optimal as the full maximum likelihood solution,
which would maximize the joint likelihood, but it is much faster, and still
unbiased.
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1/f profile

Assuming that the time-ordered data are completely noise dominated, and
that the noise is Gaussian and diagonal in Fourier space with mean zero
and unknown variance 〈ñ f ñ∗f 〉 = 〈Pf 〉, where ñ f ≡ F f tnt, and Pf is the
observed TOD power spectrum with length N, the likelihood forφ( f ) is

− logL =
1
2 ∑

f

[
Pf

φ( f )
+ log(2πφ( f ))

]
. (2.3)

The maximum likelihood estimator for the parameters σ0, fknee,α is given
by minimizing equation (2.3) with respect to the model

φ( f ) = σ2
0

(
1 +

[
f

fknee

]α)
. (2.4)

With respect to some parameter X, this is done by solving

(− logL),X =
1
2 ∑

f

φ( f ),X

φ( f )

(
1− Pf

φ( f )

)
= 0, (2.5)

which for X = σ2
0 results in

σ0 = N−1
freq ∑

f

Pf

1 +
[

f
fknee

]α . (2.6)

The remaining parameters can be determined with a nonlinear search.
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For the QUIET detectors, it turns out that the assumption of complete
noise dominance is not realistic, even when observing a weak source like
the CMB. Figure 2.9 shows the season average of the observed power spec-
trum for one W-band detector, based on only constant elevation scans with
good observing conditions and observation of CMB patches only. It shows
the expected 1/f-profile for most frequencies, but at high frequencies there
is a forest of spikes, with the most prominent one being a 10 Hz alias of
the 60 Hz mains power at the site. For the Q-band array, the most largest
deviation is a broader bump of excess power between 5.4 Hz and 6.35 Hz.

Since these problems are located in a distinct frequency range, they can
be dealt with by down-weighting these frequencies in the likelihood,

− logL =
1
2 ∑

f
w f

[
Pf

φ( f )
+ log(2πφ( f ))

]
, (2.7)

with the weights w f being zero in problematic regions and one otherwise.
These weights also allow us to exclude the multiples of the scanning fre-
quency from the noise estimate. Any signal which mostly varies with az-
imuth, which includes ground pickup through sidelobes as well as the ac-
tual sky signal, will have the greatest contribution at these frequencies, so
we avoid these as a precaution.

The performance of the resulting masked 1/f estimator at recovering
the input parameters for noise only simulations is illustrated in figure 2.10,
which shows that the estimator is unbiased. However, this unbiasedness
only carries over to real data if no significant signal is left unmasked, and
if the real noise actually follows a 1/f profile. This is investigated in fig-
ure 2.11. It shows the season co-added6 detection of a deviation between
the data and model for one detector, expressed as the number of standard
deviations per 1.25 mHz bin in frequency. This can be calculated by notic-
ing that Pf

ψ( f ) follows a scaled chi-squared distribution with 2 degrees of
freedom and mean 1. Summing these in bins over the whole season, we
arrive at

χ2
b = 2 ∑

CES
∑
f∈b

Pf

ψ( f )
, (2.8)

which is an unscaled chi-squared with Nb = ∑CES ∑ f∈b 1 degrees of free-
dom. Nb will typically be of the order of 105, so we can use a Gaussian
approximation to express this as the number of standard deviations away

from the expectation value: χ
2
b−Nb√

2Nb
.

The figure shows that deviations from a pure 1/f profile are detectable
at the 2-5 sigma level per bin for most bins, with larger deviations at the

6Using only CESes from CMB patches that pass the data quality cuts.
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lowest frequencies. It is clear that a 1/f profile is only an approximation to
the true noise shape, which is more complicated. Still, it is a good enough
approximation that deviations are not significant at the single-CES level,
and when integrating over all unmasked frequencies, the deviation neces-
sarily averages to zero. Hence, the overall effect of approximating the noise
with ψ( f ) is slightly suboptimal noise weighting in the map-making step,
which does not lead to any bias in the final map, but may move a small
amount of power between small and large scales in the noise covariance
matrix.

The discussion above only considered observations with low signal-
to-noise per sample, such as CMB observations. When observing strong
sources such as the Moon (both polarization and temperature) or Jupiter
(temperature), it is unfeasible to mask out their contribution in frequency
domain, as every frequency will be contaminated. However, the signal
is localized in time-domain, making it possible to perform the masking
there instead. The problem can be formulated as one of sampling the noise
parameters θ = {σ0, fknee,α} given knowledge of only parts of the data
stream. That is, we wish to find P(θ|d) = P(Pf (θ)|d) ∝ P(d|Pf (θ)), where
d is the incomplete time ordered data, with the masked samples missing.

Assuming that the unmasked samples in d have low signal-to-noise, d
is a sample from N(0, C), where C = MF−1PFMT and M is a projection
operator from the full unmasked TOD to the masked TOD. While in prin-
ciple straightforward, this approach does not scale well with TOD length,
requiring memory of the order O(N2

samp) and processing time of the order
O(N3

samp), with Nsamp usually exceeding 105.
A much more efficient approach is to use the fact that one can sample

from a joint distribution by iteratively sampling from its conditional distri-
butions. This allows one to simplify the problem by adding more parame-
ters to the joint distribution. In this case, what makes it difficult to estimate
θ is the presence of holes in the TOD, which makes the Fourier basis non-
orthogonal. We can rectify this by adding the data inside the holes to the
set of parameters to be estimated. We then sample (θ, d′) jointly through
the iteration

d′ ←P(d′|θ, d) (gap filling) (2.9)
θ ←P(θ|d′, d). (2.10)

Here, d′ is a gap-filled version of d. That is, the masked areas of d have been
filled with a noise realization based on d and the noise parameters θ.

The details of this more general estimator can be found in paper III of
this thesis, but it is not needed for QUIET’s CMB patches due to the low
signal-to-noise per sample there.
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Figure 2.9: The measured noise profile compared to the model. The green
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Figure 2.11: Lower panel: The full-season significance of the deviation of
the noise power spectrum from the best-fit 1/f profile per 1.25 mHz bin.
For a perfect match, the values should be normal distributed with mean
0 and variance 1. Upper panel: logarithmic plot of the square of the sig-
nificance of the deviation. Two effects are visible in these plots: A trend
towards higher than expected noise in the lowest bins, and spikes of vary-
ing significance at various frequencies. While these are significant when
co-added over the season, they are not detectable for a single CES-detector
(except for the 10 Hz spike), and they do not systematically add up during
map making.
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Correlations

The covariance between noise streams {nd} is defined as

Cov(nd, nd′) ≡ 〈(nd − 〈nd〉)(nd′ − 〈nd′〉)〉. (2.11)

Given a series of samples ndf for each stream in frequency space, and as-
suming a mean of zero, the covariance can be estimated as

Covdd′ =
1

Nfreq
Re(∑

f
ndf n∗d′ f ). (2.12)

This assumes that the covariance is the same for all the samples, but we
have already seen that both the variance and correlations are frequency
dependent for the QUIET detectors. We therefore subdivide the frequencies
into bins, within which the covariance is approximately constant. By also
allowing frequency weighting, we arrive at

Covdd′b =
(

∑
f∈b

w f

)−1
Re
(

∑
f∈b

ndf n∗d′ f w f

)
(2.13)

Cdd′b =
Covdd′b√

CovddbCovd′d′b
. (2.14)

The frequency binning results in sharp jumps in correlation when moving
from one bin to another, which results in unacceptably long time-correlations
in the noise model. This can be avoided by using spline interpolation be-
tween the bins.7

2.1.2 Filters

The four main contaminants in the QUIET time-ordered data are atmo-
spheric disturbances (i.e. bad weather), ground (fig. 2.14) and sun (fig. 2.13)
pickup through sidelobes in the telescope beam, and high frequency spikes
from the electronics. The typical shape and magnitude of these in fre-
quency space is illustrated in figure 2.12 in comparison with the typical
polarized CMB signal. For a single CES from a single detectors, the con-
taminants strongly dominate the CMB, and though they will tend to aver-
age down when more CES-detectors are co-added, they are strong enough
that this will not bring them down to acceptable levels unless they are dealt
with by cuts and filtering.

7This approach, with the spline being done logarithmically in frequency, is what QUIET
actually uses. However, a possible improvement would be to not force C to be a correlation
matrix, but instead use it to absorb deviations from a 1/f profile. One would then use

Cdd′b =
(

∑
f∈b

w f

)−1
Re
(

∑
f∈b

ndf n∗d′ f w f√
φd( f )φd′ ( f )

)
. (2.15)
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Figure 2.12: Illustration of the different contributions to QUIET’s time-
ordered data. The strongest contribution is the noise, which follows a 1/f
pattern with a white noise floor about 6 orders of magnitude (in power)
above the polarized CMB itself, which appears as a set of bumps around
harmonics of the azimuth scanning frequency. This picture is complicated
by several systematic effects. At low frequencies, atmospheric effects (bad
weather) may start to dominate, while the high frequencies are polluted by
occasional narrow spikes. Neither the very low or very high frequencies
have much CMB contributions, so the weather and spikes can be removed
by applying a bandpass filter. However, ground pickup from telescope
sidelobes enters as a systematic in the same frequency range as the CMB,
and must be handled by an azimuth filter instead.
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Figure 2.13: Map of the stokes Q component of the sky in Sun-relative co-
ordinates for the detector and deck orientation that shows the strongest
contamination from the Sun. The center of the map is the position of the
sun. The central ∼ 30◦ are unexposed due to sun avoidance. The first and
second panel cover the part of the W-band observing season before and
after the upper ground screen was installed. Before, the triple reflection
sidelobe and the spillover sidelobe are both visible, with amplitudes of up
to 10mK; after, they are both gone. The strength of both sidelobes and the
position of the spillover sidelobe varies with deck angle and position in the
focal plane. See [? ] for a more comprehensive review of the sidelobes.
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Figure 2.14: Left panel: A stokes Q map in horizontal coordinates based on
the CMB scans of the Q-band observations at a deck orientation of 165◦.
In these coordinates, any signal from the sky will average down, while
any function of az and el, such as the ground signal, will add up. Due to
their different locations in the focal plane, each detector will see a different
ground pattern – this image shows the average of these contributions. Sig-
nificant ground pickup is visible: The color range in this map goes from -0.1
mK (blue) to 0.1 mK (red). Right panel: Azimuth-binned TOD for a single
CES-detector from the Q-band season, compared to a best-fit 2-parameter
cosine model.

From the figure it is clear that normal weather and spikes can be effec-
tively dealt with by using an apodized bandpass filter (see section 4.5.1)
between roughly 0.1 Hz to 4.5 Hz (Q-band) and 9.5 Hz (W-band), which
is indicated with the blue region in the figure. However, bad weather can
be much worse than indicated here, and may in the worst cases dominate
all the way up to several Hz. These latter cases must simply be cut (see
section 2.1.3 for details), but in less severe cases it is still possible to filter
it out by using a harsher high-pass filter. But increasing the threshold of
the high-pass filter must be done sparingly: The primary goal of QUIET is
to put upper bounds on the primordial B-modes, and these are most eas-
ily detected in the multipole range l . 70, and a significant fraction of the
power in this range comes from frequencies below 1 Hz. We therefore use
an adaptive scheme which adjusts the filter cutoffs individually for each
CES-detector as follows:

Highpass cutoff The lowest frequency fhp = (i + 1
2 ) fscan for i ∈ Z+ for

which the chisquare of the data at all the higher frequencies χ2 =
∑

fmax
f = fhp

Pf
φ( f ) is within 4 sigma of the expectation value, and for which

all scan frequency harmonics above this frequency also have chisquares
within 4 sigma of the expectation value, based on the 49 modes cen-
tered on each such harmonic. The resulting value is then capped from
below to fhp ≥ 3

2 fscan based on the null-tests.
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Lowpass cutoff The frequency flp = min( fspike, fbump), where fspike is the
highest frequency such that the range [2Hz, fspike] contains no single

modes f with χ2
f = Pf

φ( f ) > 15, and fbump is the highest frequency
such that no consecutive set of 100 Fourier modes within the range
[2Hz, fbump + 50∆ f ] has a chisquare more than 5 sigma away from
the expectation value. Here ∆ f is the frequency interval per Fourier
mode.

Combining these cutoffs with 1/f-type apodization8, we get a total filter
profile of

Ff =
[

1 +
(

f
fhp

)αhp
]−1 [

1 +
(

f
flp

)αlp
]−1

, (2.17)

withαhp = −20 andαlp = 300, which results in typical correlation lengths
of 1-2 minutes.

Ground pickup is not localized to a well-defined set of frequencies.
They are spread out over the same frequencies as the CMB itself, and hence
can’t be handled with a bandpass filter. It is formed by sidelobes hitting
the ground, and because the ground, unlike the sky, is stationary with re-
spect to the telescope, the observed ground pickup will depend only on the
telescope azimuth, elevation, deck orientation, the detector’s position and
orientation in the focal plane, and the ground signal itself. Hence, during
a CES, where elevation and deck orientation are constant, and the ground
properties presumably do not change noticeably, the ground pickup will
be a function of azimuth only. We therefore employ a filter in azimuth to
reduce the impact of the ground. Implementation-wise, this is handled as
a generalized filter (section 4.5.2) with a basis choice9 of

bi(az) = cos
[

iπ
az− azmin

azmax − azmin

]
. (2.18)

As the number of basis functions used for the filter increases, so does its
ability to pick up sharp changes in the ground signal, but this comes at the
cost of also removing more of the CMB and a large increase in computa-
tional cost due to the need to project out these modes from the covariance
matrix. The number of basis functions used for the filter should therefore

8We also evaluated cosine apodization of the form

Ff =


0 if f ≤ fc − ∆
1
2{1− cos( π∆ [ f − ( fc − ∆)])} if fc − ∆ < f ≤ fc + ∆

1 if fc + ∆ < f
, (2.16)

which has the advantage of transitioning from no damping to complete damping in a finite
frequency range, but this resulted in much greater correlation lengths than a 1/f-type filter.

9Chebyshev or Legendre polynomials would be other good alternatives.
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be large enough to make the TOD as a function of azimuth consistent with
noise, but no larger. Defining ai as the best-fit amplitude of the i’th basis
function, and the deviation from the expected effective chisquare as

σn ≈ χ2
n − (Nsamp − n)√

2(Nsamp − n)
with χ2

n = ∑
t

(
dt −

n

∑
i=1

aibi(azt)

)
,

we choose the number of modes to include, nbasis, to be the lowest value
that fulfillsσnbasis < min{σ1 . . .σ15}+ 1. Typical values are in the range 0 to
4.

The final major contaminant, the signal from the Sun as seen through
the sidelobes, only affects the small fraction of CESes that enter the sidelobe-
contaminated region in sun-relative coordinates (see figure 2.13) 10. The
sidelobes are not sufficiently mapped out to allow a reliable filter to be con-
structed, so this effect must instead be handled through cuts.

2.1.3 Cuts

The QUIET maximum-likelihood pipeline employs an array of cuts to safe-
guard against bad weather, contamination from sidelobes and instrumental
defects. These cuts are summarized in table 2.2.

Most of the cuts are tests of consistency between the data and the noise
model. Because QUIET is strongly noise-dominated during CMB scans,
any deviation of the data from the noise model during a single CES means
that either the data have been contaminated by a non-CMB signal, or the
noise model does not fit the actual noise properties. In maximum-likelihood
map-making both of these cases need to be avoided: Extra signal will bias
the map, while wrong noise will result in a suboptimal map and bias the
covariance matrix.

The noise consistency cuts can be divided into two subclasses: Direct
cuts based on data that will actually be used in the analysis (i.e. data that
survive the filter), and indirect cuts which use the filtered data as a proxy
for detecting effects that are likely to also contaminate the unfiltered data.
For direct cuts, the goal is to detect deviations from noise, and a cut thresh-
old of 4-5 sigma11 is high enough to avoid significantly truncating the noise
distribution through false positives while still being strict enough to detect
all but the weakest effects.

10These sidelobes are so weak that they are only detected when they hit the sun. A figure
of the sky in moon-relative coordinates was consistent with no signal.

11This is for fixed-location cuts. For variable location cuts like parts of the spike cut, the
threshold should be somewhat higher to compensate for the added opportunities for the
increased opportunity for false positives due to thousands of modes being tested. This is
called the “look elsewhere effect” in some fields.



44 CHAPTER 2. TELESCOPE AND CALIBRATION

Name Cut Q (%) Cut W (%) Description
P T P T

Static 12.3 5.3 9.7 8.9 Broken detectors, missing data or precalibra-
tion data.

Gain 7.4 0.0 11.5 50.0 Cuts detectors where no gain model has been
established due to missing calibration observa-
tions.

Noise fit 7.4 0.0 9.1 8.3 CES-detectors where the 1/f-profile fit failed.
This usually happens due to bad weather.

Noise out-
lier

9.3 40.8 12.3 55.4 CES-detectors with σ0 or α more than 5 sigma
away from that detector’s median, or fknee
more than 5 sigma above the median.

ADC resid-
uals

4.0 19.3 6.5 37.6 Cuts if evidence for a non-linear ADC response
is greater than 5 sigma. In practice, this is also
sensitive to bad weather.

Weather 8.2 6.4 9.9 8.5 Cuts if the rms of the 10 s-rms values of the
TOD is more than 5 sigma away from the sea-
son median, and similar for the 30 s-rms values.
Also cuts if the current PWV > 5 mm.

Fourier χ2 16.2 39.9 18.5 31.7 Validates the χ2 of frequency ranges by com-
puting the number of standard deviations
δ(χ2) ≈

∣∣∣ χ2−n√
2n

∣∣∣, where n = 2Nfreq is the num-

ber of degrees of freedom. Cuts if δ(χ2) >
4, δ(χ2

fscan±10mHz) > 10, δ(χ2
0Hz...0.2Hz) > 10,

δ(χ2
10Hz...) > 20 or δ(χ2

filtered) > 4.
TOD χ2 6.0 24.3 6.4 25.0 Cuts if a χ2 based on every 10th sample of the

filtered TOD is more than 4 sigma away from
the expectation value, or if the sample with the
highest absolute value in the filtered TOD is
higher than 7 times its rms.

Azimuth χ2 2.7 9.1 3.5 8.5 Cuts if azimuth structure in the TOD is detected
at more than 4 sigma.

Spike 5.4 21.1 7.8 24.3 Cuts if the 1 Hz and 1.2 Hz spikes associated
with the cryostat, and their first 6 harmonics are
detected at more than 20 sigma, or if any 0.1 Hz
interval between 0.2 Hz and 4.5 Hz (Q) or 9.5
Hz (W) has a χ2 excess of more than 7.5 sigma.

Sun 8.6 9.9 2.2 0.0 Rejects CES-detectors if any of their samples ex-
pressed in Sun-relative coordinates hit an area
with a season-average detection of the sun of
more than 5 sigma. See the text for details.

Conservative 18.3 17.0 16.5 15.1 Rejects all detectors for a given CES if more
than 40% of the detectors fail the weather, TOD,
Fourier, azimuth, spike or sun cuts.

Total 41.7 65.7 41.7 91.6 Less than the sum because of a large degree of
overlap.

Table 2.2: Summary of the QUIET cut criteria and the amount of data cut
for each criterion.
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For the indirect cuts, however, the goal is not detection of deviations
from the noise model, as the filtered regions are expected to be contami-
nated even for usable data. In this case there are two approaches to choos-
ing cut thresholds: Firstly, one can try to model the relevant contamina-
tions’ frequency dependence, and use this to establish how strong a detec-
tion in a filtered region is needed for it to significantly affect the unfiltered
region. And secondly, one can use trial and error until one finds cut thresh-
olds which cut as little as possible of the data while still passing the null
tests.12 Most of the indirect cuts in table 2.2 are based on the latter ap-
proach due to the difficulty of modelling the effect of weather, which is the
primary contaminant.

The Sun cut

As illustrated in figure 2.13, the telescope sidelobes are quite complex, ex-
hibiting both narrow, intense regions like the triple reflection sidelobe and
broader but weaker regions like the spillover sidelobe. Given some region
r in sun-relative coordinates13, we can determine the strength of detection
of the sidelobe in this region by building a map m and its covariance C in
this region, and calculating χ2 = mTC−1m.

The Sun cut is based on finding significantly contaminated regions like
these, and rejecting CES-detectors which hit them. However, the signifi-
cance of the detection depends on the choice of region: A small, sharp side-
lobe may not be detected if the region is too big, while a weak but extended
sidelobe will not be detected if the region is too small.

To get around this, we choose a hierarchical approach: For each HEALPix
Nside [26] from 256 to 1614, we calculate the χ2 for each pixel, and use this
to produce a map of the detection significance for each resolution. We then
consider a point to be contaminated by a Sun sidelobe if any of these maps
has a detection of 5 sigma or more for the corresponding pixel. We do this
independently for each module, as we observe the shape of the sidelobes
to depend on the position in the focal plane.

Contaminated regions are typically detected with a significant margin,
with chisquares up to hundreds of sigma away from the expectation value.
We can therefore afford to make some approximations in the calculation of
the χ2. By ignoring time-correlations in the TOD, and hence pixel-correlations

12Normally, being able to tweak cut parameters etc. manually would make the data anal-
ysis vulnerable to experimenter bias: If one is free to manually tweak the cut thresholds
and other parameters based on how the maps and power spectra look, then it is very easy
to end up tweaking them away from the true value towards the expected value. Null-tests
eliminate this bias by performing the test on a combination of the data that is independent
of the quantity to be measured.

13See 2.2 for the definition of this coordinate system
14These numbers are somewhat arbitrary, but correspond approximately to the observed

minimal and maximal size of the features in the sidelobes.
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in the map, we end up with a block-diagonal covariance matrix Cpp′αα′ ∝
δpp′ where p and p′ are pixel indices and α and α′ are Stokes indices. In
this case, the χ2 for a low-resolution pixel is simply the sum of the χ2 of its
constituent high-resolution pixels, meaning that only a single map-making
step is necessary per detector.

2.2 Pointing

The QUIET telescope can move with three degrees of freedom: Rotations
in azimuth (α) and elevation (ε), which are used to point the boresight at
a given point on the sky, and “deck rotations” (δ), which are rotations of
the focal plane around the boresight axis. These axes are connected to an
encoder, which provides readouts of their orientation as a part of the time-
ordered-data.

The translation from these coordinates to the galactic coordinates used
in the map-making step can be expressed as a rotation

~vg = Rgh~vh, (2.19)

where ~vh = ~e(−α, π2 −ε) and ~vg = ~e(l, π2 − b) are the unit pointing vectors
in horizontal and galactic coordinates respectively, in terms of

~e(φ,θ) ≡
 sinθ cosφ

sinθ sinφ
cosθ

 . (2.20)

Rgh is the rotation matrix from horizontal to galactic coordinates, which can
be decomposed into a rotation from horizontal to apparent equatorial coor-
dinates Rea followed by a rotation from apparent to astrometric equatorial
coordinates, and finally a rotation from equatorial to galactic coordinates
Rge such that Rgh = RgeReaRah, with

Rah = E(LST,
π

2
− bq, 0) (2.21)

Rge = E(αg,βg,γg). (2.22)

Here, E(φ,θ,ψ) is the rotation matrix corresponding to the zyz Euler angles
φ,θ,ψ:

E(φ,θ,ψ) =Rz(φ)Ry(θ)Rz(ψ), (2.23)

and LST = GMST + lq is the local sidereal time in radians, lq = −67.76166667◦
and bq = −23.02822222◦ are the telescope’s longitude and latitude re-
spectively, and αg = −57.068351386◦, βg = −62.871663896◦ and γg =
−192.859498564◦ are the J2000 Euler angles for the equatorial to galactic
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rotation. The apparent to astrometric rotation Rea is a nonlinear effect tak-
ing into account the precession, nutation and aberration etc. due to the
Earth’s orbit15.

Using equation (2.19), we can calculate the galactic pointing of each in-
dividual detector provided that we have a means of finding its horizon-
tal pointing. Each detector has a constant pointing ~vb = ~e(φ0d,θ0d) in
boresight-relative coordinates, so

~vh =Rhb~vb = E(−α,
π

2
−ε, δ)~vb, (2.24)

making the full rotation ~vg = RgeReaRahRhb~vb. This expression is sufficient
for temperature detectors, but a crucial component is missing with regards
to measuring the linear polarization components Q and U.

Each of QUIET’s polarization sensitive detector measures a fixed linear
combination cos(2ψ0d)Q + sin(2ψ0dU) of the Stokes Q and U parameters
in boresight-relative coordinates, but the decomposition of linear polariza-
tion into Q and U is coordinate system dependent, and when projected on
to the sky in galactic coordinates, the detector measures a time-dependent
linear combination given by

σdt =
[

cos(2ψdt)
sin(2ψdt)

]
. (2.25)

Equation (2.24) does not prescribe how to calculate provide ψ from ψ0.
An elegant way of solving this problem is to do away with the vectors

altogether, and work exclusively with rotations. Starting from a detector-
relative coordinate system where~ez = [0, 0, 1] is the pointing and~ex is the
direction along which the detector is sensitive to linear polarization, this
system can be rotated into the boresight system by

Rbd =E(φ0d,θ0d,ψ0d). (2.26)

The full rotation from detector-relative to galactic coordinates is then

R =RgeReaRahRhbRbd. (2.27)

This rotation can be factorized into R = E(l, π2 − b,ψ) via l = arctan2(R23, R13),
b = π

2 − arccos(R33), ψ = arctan2(R32,−R31), which provides both the
pointing and the detector orientation we need.

2.2.1 Verifying the pointing

The last two terms in equation (2.27), are hardware-dependent, and could
therefore be miscalibrated. In part to check for the presence of pointing

15This is provided by the NOVAS library.
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Object T P Remarks
Moon CD CD Hard to model
Venus CD N Few scans
Jupiter CD N
Tau A CD CD Raster scans
RCW 38 CD N
G-1 CD C Extended
G-2 CD S Extended

Table 2.3: The objects used for calibrating the telescope pointing. Columns
two and three indicate the strength of the signal in temperature and po-
larization respectively. The objects can be visible in single CES-detectors
(CD), in a single CES if all detectors are coadded (C), only if coadding over
an observing season (S), or not at all (N). The Moon is by far the strongest
source, but due to its extendedness, time-variability due to phase changes,
and its excessive brightness, it is not used for pointing.

errors, our observing strategy includes a set of calibration targets, with the
most important ones being Jupiter, RCW 38 and the galactic center patch
G-1 (see table 2.3 for a full list). These objects are strong enough to be
visible to at least some of the detectors in single constant-elevation scans,
and also have known shape, position and amplitude. This allows us to
test not only the accuracy of the pointing, but every parameter that enters
into the response matrix P. From section 4.2 we recall that, given a beam-
smoothed sky map m̃, the signal part of the time-ordered data is given by

sdt = ∑
t′hα
τdtt′ψdht′αm̃pdht′α . (4.6)

By inserting in place of m̃ a model of the source based on position, shape
and amplitude parameters, we can find the optimal parameter values by
minimizing the residual of the true TOD ddt and the predicted signal sdt:

χ2 =(d− s)T N−1(d− s). (2.28)

Figure 2.2.1 illustrates the result for this minimization for a scan of the
point-like source Jupiter and the extended source G-1, both using data from
the temperature detectors. The signal-to-noise is high enough to constrain
the model parameters with sufficient accuracy.

For each CES, the result of the fit is a set of apparent positions, shapes
and amplitudes per detector. If the pointing model, gain and beam are all
correct, these will all scatter tightly around the true values. Otherwise, the
apparent position, size and amplitude provide information about errors in
pointing, beam and gain respectively.
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Figure 2.15: Illustrations of the fitting of a source model to observations.
Top: time-ordered data for for a scan of Jupiter (left), the best fit model
(middle), and the residual (right). Middle: The same data naively projected
to pixel domain using a fast, simplified map-making procedure which ig-
nores the differential nature of the map-making equations These maps are
meant only for visually diagnosing the quality of the fit, and use a very fast,
simplified map-making procedure which ignores noise correlations and the
differential nature of the temperature detectors, resulting in spurious blue
shadows (see section 4.4.1). The fit itself happens in time-domain. The full
map-making equation does not produce these artifacts. Bottom: The data
vs. model for an extended source, the galactic center patch (G-1). The hor-
izontal and vertical axes of the maps measure the offset from the expected
position in degrees. The Jupiter model used here is a Gaussian, while the
galactic center models is an Nside = 1024 W-band map from the WMAP
satellite.
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Figure 2.16: The pointing residuals based on single-CES temperature mea-
surements of four objects: the two galactic patches, Jupiter and RCW
38. The horizontal and vertical axes show (αobs − αtrue) cos(εtrue) and
εobs − εtrue respectively, in units of arcminutes. The color scale encodes
the deck orientation in radians. The scatter is mostly confined within an
ellipse with a semi-major axis of ∼ 18′, most of which is due to a constant
collimation offset of 17.1′ ± 0.1′.
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Collimation A constant offset between the
true boresight and the fidu-
cial boresight.

Rcol = E(φc,θc,−φc)

Azimuth tilt An offset of the azimuth rota-
tion axis from vertical.

Ratilt = E(φa,θa,−φa)

Elevation tilt An offset of the elevation ro-
tation axis from east when the
telescope is pointing north.

Retilt = E(−α − π
2 ,θe,α + π

2 )

Flexure The effect of gravity pulling
the boresight lower due to
non-rigidity of the telescope.

Rflex = E(−α, k cosε,α)

Encoder offsets Errors in the calibration of
the encoder may lead to con-
stant offsets in the readouts
for each of the azimuth, ele-
vation and deck axes.

α → α − ∆α, ε → ε − ∆ε,
δ → δ− ∆δ

Acceleration Constant elevation scans in-
volve regular acceleration in
azimuth, which may slightly
change the effective direction
of the sag.

Table 2.4: The possible sources of pointing errors that were anticipated be-
fore observations started, and the rotations they correspond to.

Figure 2.16 shows the difference between apparent and true position for
Jupiter, RCW 38 and the galactic patches G-1 and G-2 based on observa-
tions with the temperature-specialized detectors. It is clear that the point-
ing model in equation (2.27) is far from sufficient. The effect of pointing
errors amounts to convolving the maps with an extra beam corresponding
to the pattern of residuals, which in this case is a non-Gaussian beam with
a diameter of up to 40’. This is several times larger than the W-band beam
FWHM of 11.7’, and also larger than the Q-band FWHM of 27.3, and it is
therefore critical to correct for the imperfections in the telescope pointing.

2.2.2 Mount model

From a hardware point of view, pointing errors are not unexpected, and
even before observations started, the error sources described in table 2.2.2
were anticipated. Of these, the most challenging to correct is the acceleration-
induced flexure. The overall effect of this would be extra smearing in the
horizontal direction, effectively producing a deck-angle-dependent ellip-
ticity of the beam, which we have not observed. The acceleration can there-
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Rotation Param. Value Error

Rbore = E(−α−[∆az +θef,az cos(−α +φef)],
π

2
−ε−[∆el +θef,el cos(−α +φef)],

δ−[∆dk +θef,dk cos(−α +φef)])

∆az −0.0357◦ 0.0041◦
∆el −0.0294◦ 0.0010◦
∆dk 0.1083◦ 0.0263◦
θef,az −0.0225◦ 0.0027◦
θef,el −0.0042◦ 0.0019◦
θef,az −0.2615◦ 0.0177◦
φef 11.3520◦ 2.8992◦

Rcol = E(φc,θc(1 +θec cos[δ+φec]),−φc)

θc 0.2948◦ 0.0015◦
φc 26.6708◦ 0.2302◦
θec 0.2126 0.0058
φec 253.8268◦ 1.5714◦

Ratilt = E(φa,θa,−φa)
θa −0.0070◦ 0.0013◦
φa −49.6202◦ 8.5147◦

Retilt = E(−α − π
2 ,θe,α + π

2 ) θe −0.0037◦ 0.0024◦

Table 2.5: The four rotations making up the mount model and their param-
eters. Except for Ratilt, all models are nonlinear. The elevation axis tilt and
the “encoder elevation flexure” are only weakly detected. Notably missing
from the model is the telescope flexure correction, which was found to be
consistent with zero. All the corrections are small, so the rotation matrices
commute to high accuracy.

fore be safely ignored.
However, of the remaining effects, none are capable of producing the

elliptical pointing residuals in figure 2.1616, nor can they explain the pe-
culiar elongation of the scatter in the angular direction in the plots or the
"U" shape observed in the residuals of Jupiter, the highest signal-to-noise
source used in the calibration17. We therefore adopted a phenomenological
mount model which allows for some unanticipated extra degrees of free-
dom in order to match the observed pointing scatter. The resulting model
has 14 parameters, and is summarized in table 2.5. Incorporating these ro-
tations into the full rotation from detector to sky results in

R =RgeReaRahRetiltRatiltRcolRboreRbd. (2.29)

A histogram of the pointing residuals from this model is shown in fig-
ure 2.17. The best-fit Gaussian to these residuals has major and minor

16The collimation error produces circular pointing residuals which can account for the
majority of the effect seen in the figure, but it cannot account for the elliptical shape.

17Observations of the Moon are also available, but due to hard-to-model temperature
variations across its disk we chose not to include these in the pointing calibration.
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Figure 2.17: A histogram of the pointing residuals from the mount
model described in table 2.5. The horizontal and vertical axes are
αcorr −αtrue) cos(εtrue) and εcorr − εtrue respectively, where αcorr,εcorr are
the mount model-corrected observations in horizontal coordinates, and
αtrue,εtrue are the known coordinates. A circle corresponding to a stan-
dard deviation of 1.91’ is overplotted (red) and compared with the W-band
beam rms (black). The scatter is moderately non-Gaussian, but is not large
enough to seriously affect the beam.

semi-axis of 2.15’ and 1.66’ respectively. We treat this difference as a sta-
tistical error, leading to an estimate for the scatter of 1.91′ ± 0.25′, which
corresponds to a FWHM of 4.49′ ± 0.59′. These add quadratically to the
effective beam size, increasing beams from 11.7’ to 12.5’ (W) and from 27.3
to 27.7’ (Q), both of which lead to an acceptable loss of sensitivity of 7% at
l = 500 and 27% at l = 1000.

2.2.3 Full-season validation of the mount model

As we have seen, the mount model performs adequately on the observa-
tions of the calibration targets. However, this need not be representative for
its performance on the CMB data if the calibration observations are system-
atically different from the CMB observations. This can come about through:

1. Different kinds of detectors: All the calibration observations that en-
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Figure 2.18: The distribution of the calibration observations in horizontal
coordinates compared to the CMB observations. Each CES is here indicated
with a colored disk, with one color per object. While Jupiter and Venus are
measured at systematically different azimuths than the CMB patches, the
RCW 38 and the patches G-1 and G-2 (here denoted Gc and Gb) remedy
this weakness. Together, the calibration sources cover most of the relevant
azimuth/elevation space.

tered into the pointing analysis were based on temperature detectors.

2. Different focal plane coverage: The temperature detectors are concen-
trated at one edge of the focal plane.

3. Different sampling of horizontal coordinates: If the optimal mount
model varies as a function of azimuth, elevation or deck, then the
best mount model for the calibration observations may not be the best
mount model for the part of the sky covered by the CMB observations
(but see figure 2.18 for why this is unlikely to be a problem).

We performed three tests to investigate these possibilities:

1. Comparison of an Nside = 2048 full-season co-added map of Jupiter18

based on the secondary total power data stream19 from the polariza-
tion detectors, with the expected size of a point source convolved

18This requires a coordinate system where Jupiter does not move, for example coordi-
nates centered on Jupiter. Such object-centered coordinates can be constructed by applying
an extra rotation Rog = E(0, bo ,−lo) after the transformation to galactic coordinates. Here
bo , lo are the galactic latitude and longitude of the object.

19This data stream has much higher 1/f noise than the main data stream, but is sensitive
enough to measure Jupiter’s temperature signal.
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with the beam and pointing scatter. The result can be seen in fig-
ure 2.19, where we find a FWHM of 13.1′. The fiducial beam for po-
larization horns is 11.7′, which is consistent with a scatter FWHM of
5.9′.

2. A similar test for the Nside = 2048, full-season co-added map of the
point source PMN J0538-4405 in patch CMB-2 (fig. 2.20), which finds
a best-fit FWHM of 14.2′ ± 1.0′. Comparing this to a temperature
detector beam of 13.1′ ± 0.2′, we find a scatter FWHM of 5.5′±2.5′

5.5′ .

3. We compared the full W-band season CMB temperature power spec-
trum and fit it to the model Cl = ACΛCDM

l e−l(l+1)σ2
FWHM(8 log 2)−1

to
determine the effective beam, and found a FWHM of 14.1′ ± 0.1′, re-
sulting in a scatter FWHM of 5.2′ ± 0.7′.

From these we can conclude that both the temperature and polarization
detectors see effective beams consistent with the pointing residuals both
when observing CMB patches and Jupiter. The scatter is small enough not
to be problematic, but it must be taken into account during power spectrum
estimation. We have adopted a value of 5.1′ for the rest of the analysis.

2.3 Gain and beam

The fitting procedure described in section 2.2.1 produces estimates of the
gain and beam as a by-product of the pointing fit, as illustrated in figure 2.3.
But there are several caveats one needs to bear in mind before these can be
applied in CMB analysis.

Firstly, these numbers were produced by fitting a Gaussian profile to
the signal, and while the true beam is approximately Gaussian, it is not
exactly so, having significantly heavier tails. This increases the beam’s area
on the sky compared to the value it would have for a Gaussian beam.

Secondly, the effective wavelength of the observations depends on the
spectral index of the target, which varies from 0 for the CMB to ∼ −3 for
synchrotron-dominated areas like the galaxy. With an average bandwidth
of 17% (Q), 11% (W), this can lead to differences in effective frequency of
up to 3%, which corresponds to changes of up to 6% in the area of the beam.

Thirdly, when using point sources for calibration, the observed flux de-
pends on the beam area Ωb as F ∝ Ω−1

b . The gain is defined as the ratio of
the detector’s response s to the flux, g = s

F ∝ Ωb. Thus, changes in the area
of the beam propagate directly into changes in the gain when the latter is
based on point source observations. This is not a concern when observing
slowly varying, extended sources.

Putting these together, one can easily misestimate the gain by 5% by us-
ing the wrong beam area, and this would then translate into 10% errors in
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Figure 2.19: Top left: Co-added Nside = 2048 temperature map of Jupiter
from the QUIET W-band season in object-centered coordinates based on
the secondary total power data stream from the polarization detectors, in
arbitrary units. Top middle: Best fit Gaussian with a major FWHM of 13.2’
and a minor FWHM of 13.0’, and a bias in the position of ∆l = 0.42′, ∆b =
0.20′. Top right: Map of the residuals. Bottom row: Radial average of the
map, with a best-fit Gaussian with a FWHM of 13.0’, with linear (left) and
logarithmic (right) vertical axis.
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Figure 2.20: Left: A full-season co-added Nside = 2048 temperature map
of the source PWM J0538-4405 in patch CMB-2, based on the primary data
stream from the temperature detectors. Right: WMAP’s 7 year W-band
Nside = 1024 temperature map of the same source. The object can be seen at
consistent position in the two maps. Due to low signal to noise, the effective
beam is somewhat poorly determined, at 14.2′± 1.0′. Figure courtesy of H.
K. K. Eriksen.

the power spectrum. A detailed study of the beam shape was performed in
[27], which determined that the relevant beam area for temperature obser-
vations of Jupiter is 15.58± 0.63µSr, compared to 16.7µSr for the Gaussian
approximation. The gains from the Gaussian fit must therefore be scaled
by 0.93 before being used.

With this done, the Jupiter fit provides ∼ 500 gain measurements for
each temperature detector, which is sufficient to produce a reliable gain
model. The gains show evidence of module-dependent trends at the ∼ 5%
level, or slightly higher than the per-sample scatter of the measurements.
Due to the low amplitude of the trends, we chose to adopt a constant gain
model for the temperature gains, with the trends entering into the system-
atic error estimate.

2.3.1 Polarization gains

A thorough analysis of the polarization gains for the Q-band season was
performed in [28], where it was found that gain measurements based on
the Moon, Tau A, elevation dips and a wire-grid20 were correlated with the
measured temperature of the electronics T, resulting in a gain model of the

20An artificial polarized source consisting of a grid of thin wires mounted on a rotating
frame in front of the receiver.
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Figure 2.21: An example of gain and beam size estimates produced by fit-
ting a Gaussian profile to Jupiter observations (see section 2.2.1) for a sin-
gle detector. The top row shows the gain estimates as a function of time
(left) and a histogram of these (right). There is some evidence of time-
dependence of the gain. The bottom row shows the equivalent graphs for
the beam.
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form

gdt = αd(1 +βd[T(t)− T0]), (2.30)

with T mostly varying around T0 = 25.1K.
For the W-band season, the situation is quite different. Firstly, the source

of the gain-temperature correlation was eliminated, and secondly, the prob-
lem of gain nonlinearity is much more prominent here, making both Moon
observations and elevation dips unreliable as calibrators. The W-band gain
model must therefore be built based on a much reduced data set, consist-
ing of two Tau Ameasurements per day, half of which are for the central
horn, and of one day of wire-grid measurements at the end of the season,
providing relative gains for all the detectors at the same time.

This data set is too small to build a time-dependent gain model for each
detector; we therefore assume that the time-dependent part of the gain
is shared between detectors, and that these only differ by a constant fac-
tor. This picture is supported by figure 2.3.1, which shows that the gain is
clearly time-dependent, and that this time-dependence is common for all
four detectors for which a significant amount of data is available. The time
dependence has the form of a wave with a period of approximately one
year, and a slight downwards trend. This motivates the model

gd(t) = αd [1 +β(t− t0) +γ sin(ω(t− t0) + δ)] , (2.31)

where only the overall factorαd is diode dependent, and the shape parame-
tersβ,γ,ω and δ are shared between detectors. Two fits of this model to the
data are shown in the figure: a maximum likelihood fit based on the cen-
tral horn only, and a fit based on all the detectors. These have χ2 = 679 for
492 data points and 8 parameters, and χ2 = 2381 for 1920 data points and
313 parameters respectively. In both cases, there is evidence for extra scat-
ter beyond that expected from the error bars. This is not surprising given
the simple and ad-hoc nature of the gain model and the small amount of
data available from which to construct it. However, the fit for the full data
set is comparatively worse compared to the central horn only case, and as
seen in the figure, the other detectors seem to prefer a different phase and
amplitude of the modulation than the one exhibited by the central horn.
This may indicate that the assumption of a common time dependence for
all detectors is inaccurate. Still, the model is a useful approximation to the
gain, and performs better than the hypothesis of constant gains or linearly
changing gains. We therefore adopt this as the polarization gain model,
and interpret the extra scatter in the residuals as a systematic error.
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Figure 2.22: Top: Polarization gain measurements from Tau Aand the wire-
grid for the four detectors in the central module. These are shown as red
points with error bars. A roughly seasonal modulation is clearly visible,
as well as a slight downwards trend, and the shape of these is the same
for the four detectors. The green curve shows the best fit harmonic+linear
model based on these four detectors while the blue curve shows the best
fit including data from the other 305 usable polarization detectors, which
have only on average 4.6 data points each. The blue curve is a somewhat
worse fit to the central module data. This may indicate that not all detectors
prefer the same time dependence as the central module. Bottom: Residuals
of the full model as a function of time.



Chapter 3

Null tests

As the calibration chapter shows, the analysis pipeline has a large number
of tunable parameters, including the pointing model, gain model, filter pa-
rameters and cuts. Both which parameters to use and their value will end
up affecting the final result, which thus in a sense inherits the tunability of
the parameters: The amplitude of the power spectrum will change depend-
ing on the gain model, and a poor pointing model will lead to less power
on small scales, to name two examples.

This introduces the danger of observer bias – the tendency to observe
what one excepts to observe because unexpected results will tend to get
more scrutiny than expected results. A famous example of this is related
by Richard Feynman [29]:

Millikan measured the charge on an electron by an experi-
ment with falling oil drops, and got an answer which we now
know not to be quite right. It’s a little bit off, because he had the
incorrect value for the viscosity of air. It’s interesting to look at
the history of measurements of the charge of the electron, after
Millikan. If you plot them as a function of time, you find that
one is a little bigger than Millikan’s, and the next one’s a little
bit bigger than that, and the next one’s a little bit bigger than
that, until finally they settle down to a number which is higher.

Why didn’t they discover that the new number was higher
right away? It’s a thing that scientists are ashamed of–this history–
because it’s apparent that people did things like this: When they
got a number that was too high above Millikan’s, they thought
something must be wrong–and they would look for and find a
reason why something might be wrong. When they got a num-
ber closer to Millikan’s value they didn’t look so hard. And so
they eliminated the numbers that were too far off.

61
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3.1 Signal-less validation

The standard way of avoiding observer bias is through blind analysis, which
is the practice of performing the experiment and data analysis without
peeking at the results underway. In CMB data analysis, the analysis pipeline
itself can be validated through end-to-end simulations, while most calibra-
tion can be tested through calibration-dedicated subsets of the data, such
as Jupiter observations in our case. But as we saw in sections 2.1.2 and
2.1.3, some calibration parameters deal with removing variable contami-
nants such as the atmosphere from the data, and these must be tested on
the main data set itself. It is, however, possible to perform this test without
exposing oneself to the results, and thus the results to bias. One simply
sub-divides the data set into two halves such that each should have the
same signal, and considers their difference:

∆d = d2 − d1 = (s + n2 + c2)− (s + n1 + c1) = ∆n + ∆c. (3.1)

Here d is the data, s is the signal, and n and c represent the noise and con-
taminants respectively. Since ∆d is independent of the signal, it can be
safely used without introducing bias, and one can ensure the quality of
one’s cuts and filters by demanding that ∆d have no ∆c contribution, i.e.
that it is consistent with noise. This technique is known as null-testing.

3.2 Map null-tests

The QUIET maximum likelihood pipeline uses two kinds of null-tests: map-
based and pseudo-Cl power spectrum based estimators. The former of
these is the most straight-forward: Given two sub-sets of the data, com-
pute the map m and covariance matrix M of each of these sets. Then the
difference map m2 −m1 should consist of Gaussian noise with covariance
M2 + M1. We can check this by computing the χ2:

χ2 = (m2 −m1)T(M2 + M1)−1(m2 −m1), (3.2)

which should be chisquare-distributed with Ndof = NpixNstokes degrees of
freedom, with a mean of Ndof and a standard deviation of

√
2Ndof. A sig-

nificant excess in this number indicates that there remains unfiltered junk
in the data1, while a significant shortfall only can be produced by an over-
estimate of the noise.

Null-tests based on maximum likelihood maps are expensive both time-
wise and memory-wise, because they impart the full expense of computing
unbiased maps and their covariance matrix. When considering that one
will want to perform more than just a single split of the data in order to look

1Or that the noise has been under-estimated.
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for different kinds of pollution, these null-tests can easily come to totally
dominate the computational expense of the data analysis. Or put another
way, it is only possible to perform a small number of null-tests this way.

3.3 Pseudo-Cl null-tests

An alternative, less expensive way of detecting deviations from null is by
replacing covariance matrices with simulations. Given, as before, maps m1
and m2, and a set of simulations based on the same split of the data, {ξ1i}
and {ξ2i}, we can compute null maps ∆m ≡ m2 − m1 and {∆ξi ≡ ξ2i −
ξ1i}. Given some function of the null maps f (∆m), we can compute the
deviation of the actual null map from the null simulations by computing
the probability to exceed the observed value of f :

PTE( f ) ≈ counti( f (∆ξi) > f (∆m))
Nsim

. (3.3)

The function f allows us to choose which parts of the maps we wish to
test. We are ultimately interested in computing the binned angular power
spectra2 CEE

b , CBB
b and CEB

b . It therefore makes sense to make f simply be
the pseudo-Cl approximation of power in these bins,

CAB
b (m) =

∑(l∈b)m l(l + 1)m̃A∗
lm m̃B

lm

∑(l∈b)m l(l + 1)
. (3.4)

This is more conveniently expressed as a χ value, i.e. the normalized devi-
ation from the mean of the simulations:

χAB
b (m) =

CAB
b (m)− 〈CAB

b 〉√
var(CAB

b )
. (3.5)

Here uppercase Latin indices run over the polarization component, that is
E or B, and m̃A

lm is the pseudo-harmonic coefficients of the map m. The
choice f = χ not only allows us to individually test each of the angular
scales we are interested in, it also makes it easier to track down the cause
of a failed null-test by its l-dependence.

The two major causes of null-test failures are contaminations, which
result in extra power (high χ) and thus too low PTEs, and noise misestima-
tions which result in either too low or high PTEs. As a catch-all for both
these cases, it is useful to consider the χ2 AB

b , for which both types of devia-
tions end up as high values, and thus low PTEs.

2The binning is necessary due to the low sky coverage, which strongly correlates nearby
multipoles. For patches of ∼ 1% of the sky, a bin size of 50 is sufficient to decorrelate the
bins (see fig. 5.3).
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An advantage of this variant of null-tests is that by processing the data
and simulations the same way, any bias in the map-making procedure is
automatically taken into account. Hence, we do not need to use the full,
unbiased maximum likelihood map-making equation; much faster, but bi-
ased, binned maps3 can be used instead. Together with the lack of need
for the covariance matrix, this results in the pseudo-Cl null-tests being 1-2
orders of magnitude faster than the maximum likelihood null-tests, greatly
increasing the practical number of null-tests.

This does not come completely for free, though. Due to using different
map-making and power spectrum estimation than the full analysis would,
maximum likelihood and pseudo-Cl null-tests could in theory be sensitive
to different things, even when using the same data splits and power spec-
trum binning. To test for this possibility, we ran a small number of null-tests
through both the ML and PCL machinery. This confirmed that the two test-
ing methodologies were consistent, allowing us to choose PCL null-tests as
the primary tests for the Q- and W-band analysis.

3.4 Null test suite

Table 3.4 shows a summary of the W-band null test suite together with
the final probability to exceed (PTE) for each combination of test and CMB
patch4. The suite consists of 23 individual data splits, each of which results
in one test per multipole bin per EB-combination for each patch, for a total
of NtestNbinNspec = 23 · 20 · 3 = 1380 tests per patch, or 5520 tests in total.

Based on this, we compute 3 summary statistics for each patch: PTE(max[χ2 AB
b ]),

which exposes the worst individual null-failure; PTE(∑ χ2 AB
b ), which ex-

poses persistent deviations from expected power independent of the direc-
tion; and PTE(∑ χAB

b ), which exposes systematic excess or lack in power.
Our requirement for declaring the null-suite as passed is that these 12 sum-
mary statistics should have no significant excess of very low < 0.05 or very
high > 0.95 values. The Maximum Likelihood pipeline W-band analysis
reached this milestone April 2012, 16 months after the data taking finished,
making the null-tests the most time-consuming and comprehensive part of
the analysis effort. At this point, we finally allowed ourselves to “open
the box” and calculate the non-null maps and power spectra, which are
described in the next chapters.

3See section 4.4.1.
4The Q-band null test suite is very similar, and is therefore not included here.
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Split Sensitive to 1 2 3 4
Time (MJD) Gain drifts 0.24 0.01 0.89 0.77
Focal plane radius Ground, beam ellipticity 0.15 0.51 0.21 0.61
ADC nonlinearity Uncorrected nonlinearity, weather 0.68 0.95 0.54 0.02
Power at fscan Ground, weather 0.25 0.35 0.53 0.76
Power at 10 Hz Electronic problems 0.41 0.56 0.53 0.48
Elevation Ground, mount 0.58 0.08 0.39 0.55
Deck angle Ground, mount 0.54 0.12 0.27 0.77
Azimuth Ground, mount 0.76 0.95 0.66 0.11
Tencoder Weather, electronics 0.08 0.09 0.24 0.06
∆Tencoder Weather, electronics 0.13 0.54 0.09 0.51
Tcryostat Weather, electronics 0.17 0.86 0.31 0.26
∆Tcryostat Weather, electronics 0.86 0.51 0.07 0.68
Gain Gain model 0.55 0.81 0.01 0.34
Water vapour (PWV) Weather 0.52 0.30 0.79 0.94
Wind Pointing 0.33 0.02 0.57 0.94
Tambient Weather 0.62 0.16 0.42 0.92
fknee Weather, noise model 0.21 0.81 0.49 0.03
σ0 Weather, noise model 0.25 0.41 0.06 0.52
Module mean ν Strong foregrounds 0.58 0.27 0.58 0.87
Assembly board Electronic problems 0.55 0.38 0.60 0.25
TOD rms variability Weather 0.93 0.18 0.47 0.17
Q vs. U detectors 0.73 0.36 0.99 0.29
I → QU leakage Leakage misestimation 0.16 0.11 0.91 0.43

Total χ2 Deviation from expected power 0.31 0.08 0.31 0.43
Max χ2 Individual null-failures 0.63 0.02 0.72 0.80
Mean χ shift Power excess 0.20 0.27 0.21 0.97

Table 3.1: Summary of the pseudo-Cl null-tests used in the W-band anal-
ysis. The last four columns correspond to each of the 4 CMB patches in
the polarization analysis, and specify the probability to exceed (PTE) the
observed value in the test, based on 100 simulations. The tests are divided
into two types: individual tests and summary tests, corresponding to the
top and bottom sections of the table. The main categories of individual
tests are splits based on pointing, features in the TOD, temperature of elec-
tronics, detector type and weather conditions. Before opening the box, we
demanded that there should be no significant excess of very low (< 0.05)
or very high (> 0.95) PTEs in the summary null-tests.
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Chapter 4

Map making

4.1 Measuring the sky with a scanning telescope

Most people’s idea of how a telescope takes images of the sky is that it
works much like a normal camera: There is an array of detectors (pixels)
behind an optical system for focusing the light, and a picture is taken by
pointing the instrument at an object and exposing the detectors for a short
while. This is a reasonable sketch of how a typical optical telescope works,
but when going to lower frequencies, this mode of operation becomes im-
practical: The practical size of a detector scales in proportion to the wave-
length, greatly reducing the number that can be fit in the focal plane. For
CMB experiments, the typical number of detectors is from tens to a few
thousands, compared to a few millions to hundreds of millions for optical
telescopes. Additionally, the signal-to-noise ratio per unit of time is often
much lower in radio experiments, and there may not be enough signal to
construct a useful image in one continuous exposure before the target ro-
tates below the horizon.

To get around these limitations, telescopes at low frequencies scan the
sky, using their small number of detectors as a paint brush and the scanning
motion as paint strokes to paint a larger image. The direct output of such a
telescope is not a single value per pixel, but instead a time series of values
for each detector, called the time-ordered data (TOD). Based on this TOD
and information about the telescope’s scanning pattern, it is possible to
reconstruct an image of the sky in a process called “map making”. When
low S/N data are involved, it is critical that the resulting map has well-
understood statistical properties, which in turn means that one needs to
understand the properties of the TOD. Hence, to produce an image with
a scanning telescope, one must first build up an accurate model for how
the telescope transforms the signal from sky to TOD, and then invert this
model to reconstruct the sky from the TOD.

67
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4.2 From sky to time-ordered data

Given a sky m, the most general possible response function give us the
noise-free time-ordered data s(d, t) for the detector labeled d and the time t
as

s(d, t) = P(d, t, m(t)). (4.1)

It is not practical to work with infinite-resolution skies or time-streams with
arbitrary response functions, so in practice one has to make a few simplify-
ing assumptions:

Discrete TOD The telescope provides a set of samples instead of a contin-
uous time-stream.

Discrete sky We model the sky as consisting of a set of discrete pixels. This
is of course not true, but it is a good approximation as long as the
pixels are smaller than our angular resolution.

Constant sky We assume that the sky does not change for the duration of
our data set. This implies that we are using sky-fixed coordinates
such as galactic or equatorial coordinates.

Linear response The TOD is a linear function of the sky signal. Nonlinear
responses are difficult to work with, so having a linear response is a
design requirement for most detectors.

Together, these assumptions allow us to write equation (4.1) as a matrix
multiplication:

sdt =Pdtiαmiα . (4.2)

Here i is the pixel index while α is the signal component within the pixel1.
Our job, then, is to expand Pdtiα into something concrete enough to be im-
plementable. A very general such expansion is

sdt = ∑
t′i jkαβγ

gdtτdtt′σdt′αδi0Bdt′i jαβRdt′ jkβγmkγ . (4.3)

Here the indices t and t′ are time steps, d is the detector, i, j, k and 0 are
pixels, with 0 indicating zenith, and Greek indices are Stokes components.
So the sky m is rotated into detector-relative coordinates with the pointing
matrix R and smoothed with the beam matrix B, after which the Stokes

1This could be frequency, Stokes parameter or particle type, etc. depending on what the
detectors are sensitive to. In the following, I will assume that it is the Stokes parameters
only, since it is common for detectors to be sensitive to linear combinations of these (as is
QUIET), but not so for different frequency bands. An experiment with multiple frequencies
can therefore analyse these frequencies independently.
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parameters at zenith are read off and linearly combined to a single value
using the detector Stokes sensitivity σ . This value is then convolved with
the detector time response function τ , and finally scaled with the gain g to
form the signal s at each time step for each detector.

This daunting expression can be dramatically simplified by adding a
few reasonable assumptions. The most important of these comes from as-
suming a constant, detector-independent, circular beam2. A circular B will
commute with R, and if B additionally is constant, we can apply it to the
map once and for all, avoiding the need to convolve the map with the beam
at every time step,

sdt = ∑
t′i jkαβγ

gdtτdtt′σdt′αδi0Rdt′i jαβB jkβγmkγ

= ∑
t′ jαβ

τtt′gdt′σdt′αRdt′0 jαβm̃ jβ. (4.4)

Here m̃ = Bm is the beam-smoothed map, and I have used the approxima-
tion that the g and τ commute3.

Each detector points towards a single point on the sky at a given time-
step, so to pixel accuracy R will only have a nonzero contribution from a
single pixel pdt′ of the beam-smoothed sky. The spatial part of the rotation
therefore becomes a delta function, and we are left with the Stokes param-
eter part of the rotation, ρ. Hence, Rdt′0 jαβ = δ jpdt′ρdt′αβ, and

sdt = ∑
t′ jαβ

τdtt′gdt′σdt′αδ jpdt′ρdt′αβm̃ jβ

= ∑
t′αβ

τdtt′gdt′σdt′αρdt′αβm̃pdt′β. (4.5)

This model for the response is much more efficient than equation (4.3) due
to the elimination of full-sky convolutions and rotations. However, this
simplification came at the cost of assuming a single circular beam for each
detector, which leaves out a common class of detectors, namely differential
detectors. These measure signal differences between two spots on the sky,
and have a beam consisting of two sub-beams, each with the same circular
shape, but with opposite signs in their contribution. But since each of these
beams are circular, we can still use the formula above, as long as we sum
over the contributions from each sub-beam h, weighted by its amplitude

2These are usually good approximations – most experiments are designed to have as
round beams as possible, and detectors in the same focal plane will have very similar beams
provided that they are sensitive to the same frequencies, which I assume here.

3The gain is ideally constant, but detectors are imperfect, and the gain may in practice
drift gradually. However, it will never be allowed to drift at anywhere near the time scale
of the detector time response. Hence, gdtτdtt′ ≈ τdtt′ gdt′ .
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adh.

sdt = ∑
t′hαβ

τdtt′adhgdt′σdt′αρdt′αβm̃pdt′β

= ∑
t′hα
τdtt′ψdht′αm̃pdht′α . (4.6)

Here I have introduced the rotated sensitivity ψdht′α = adhgdt′σdt′βρdt′βα.
The biggest remaining expense in equation (4.6) is the detector time

convolution τ . The importance of this factor is strongly dependent on the
type of detector used. For amplifier-based radiometers it is practically a
delta function, and can be ignored, while for bolometers it takes the form

τdtt′ = e−
t′−t
zd for t′ > t and 0 otherwise, with zd normally being 10 ms or

smaller. The effect of τ is similar to the effect of sampling at discrete time
steps – it acts as a low-pass filter that limits sensitivity at high frequencies
and hence, via the scanning pattern, the smallest scales on the sky. The
scanning pattern is typically chosen with this in mind, so that τ has negli-
gible effect on the scales of interest for the experiment, and it is therefore
usually safe to ignore this factor even for bolometers.

Equation (4.6) corresponds to an explicit form of the response matrix of

Pdtiα = ∑
t′h
τdtt′ψdht′αδpdhti. (4.7)

This is a sparse matrix, with the sparsity contained in the Kronecker delta,
and this sparsity ensures that multiplications with P are not prohibitively
expensive.

4.3 The noise

So far we have only looked at the signal part of the time-ordered data,
which are typically a minor constituent of the TOD, with the majority being
made up by noise,

ddt =sdt + ndt. (4.8)

As discussed in section 2.1, the noise is Gaussian and approximately sta-
tionary within one CES, with covariance given by equation (2.2), which is
repeated here for convenience:

Ndd′ f f ′ =
√
φd( f )φd′( f )Cdd′ fδ f f ′ . (2.2)

A note on notation here: We will need 3 different representations of co-
variance matrices: the time domain version (Ndd′tt′), the frequency domain
version (Ndd′ f f ′), and the power spectrum. The latter is simply the diagonal
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of the frequency domain representation (Ndd′( f ) = Ndd′ f f ) 4 . If the detector
indices are left out, as in Ntt′ , the result is an ndet × ndet sub-matrix instead
of a single element.

Since equation (2.2) is block-diagonal, we can find its inverse simply
by inverting each ndet × ndet sub-block. The block-diagonality also makes
operating with N on dense vectors and matrices very efficient in Fourier
space, which will come in handy. However, the advantage of working
in Fourier space is lost for vectors and matrices which are sparse in time-
domain. For these, we will need the time-domain version of N and N−1.
The discrete Fourier transform Ft f = 1√

ns
e−

2π it f
ns , F−1

t f = 1√
ns

e
2π it f

ns of a diag-
onal Fourier-domain matrix A f f ′ = a fδ f f ′ is

Att′ = ∑
f f ′
F−1

t f A f f ′F f ′t′ =
1√
ns

∑
f
F−1

(t−t′) f a f , (4.9)

with n being the number of time samples, so

N±1
dd′tt′ =

1√
ns

∑
f
F−1

(t−t′) f N±1
dd′ f f . (4.10)

This expression only depends on the time difference ∆t = t− t′, so we only
need to store the time correlation function5 N±1

dd′ (∆t) = N±1
dd′0∆t.

4.4 From time-ordered data to sky

With our signal and noise model in hand, we are ready to reconstruct a
map of the sky. The time-ordered data are given by

d =Pm + n, (4.11)

resulting in cov(d) ≡ 〈ddT〉 = 〈nnT〉 ≡ N. The likelihood of a sky m given
the data stream is

L(m) =
e− 1

2 (d−Pm)T N−1(d−Pm)√|2πN| , (4.12)

which gives a maximum likelihood estimator of

dL(m̂)
dm̂

=0⇒ m̂ = (PT N−1P)−1PT N−1d. (4.13)

4Using the same symbol in all these cases is convenient because they all refer to the same
underlying quantity. But if we actually insert numbers for the indices, the notation becomes
ambiguous. In the rare cases where this happens, I will specify the domain explicitly.

5I here use the convention from signal processing, where the correlation function is not
normalized by dividing by the variance. This quantity could therefore be more accurately
called the time covariance function.
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This is an unbiased estimator

〈m̂〉 =〈(PT N−1P)−1PT N−1(Pm + n)〉 = m, (4.14)

with covariance

M =〈(PT N−1P)−1PT N−1ddT N−1P(PT N−1P)−1〉
=(PT N−1P)−1PT N−1NN−1P(PT N−1P)−1

=(PT N−1P)−1. (4.15)

For implementation purposes it will be convenient to introduce the quan-
tity

r =PT N−1d, (4.16)

such that M−1m̂ = r. Working with r and M−1 has the advantage that
these are linear in the data - if one has several series of time-ordered data,
the contributions from each of these can be directly added into the total r
and M−1. Efficiency-wise, it is convenient that the covariance matrix and
the matrix used when solving for the map turn out to be the same, as these
matrices can have formidable sizes.

In practical applications, data will be contaminated by various poorly
modeled effects, such as signal from the atmosphere, ground pickup, etc.,
and this makes it necessary to filter the data. It is easy to see that replacing
N−1 by a general matrix K in equation (4.13) still yields an unbiased esti-
mator, and we can use this to implement filtering by choosing K = FN−1

m̂ f = (PT FN−1P)−1PT FN−1d. (4.17)

This filtered estimator has covariance

M f =〈(PT FN−1P)−1PT FN−1ddT N−1FP(PT FN−1P)−1〉
=(PT FN−1P)−1PT FN−1FP(PT FN−1P)−1. (4.18)

Here the filter F has been assumed to be symmetric. Implementation-wise,
m̂ f and M f must be built up in terms of

r f =PT FN−1d (4.19)

A−1
f =PT FN−1P (4.20)

A−1
f f =PT FN−1FP, (4.21)

such that

A f m̂ f =r f (4.22)

M f =A f A−1
f f A f . (4.23)
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We see that introducing the filter means that we now have to deal with
three matrices instead of one: A f , A f f and the covariance matrix itself,
making m̂ f a more computationally expensive estimator compared to m̂.

Under certain circumstances it is possible to avoid this expense: If FN−1F =
FN−1, equation (4.18) will simplify to

M f =(PT FN−1P)−1. (4.24)

A common case is for both N and F to be diagonal in Fourier space, in
which case the condition simplifies to F2 = F, implying a hard filter with
abrupt jumps between the values 0 and 1. As we shall see, hard filters like
this correspond to very long correlations in the time domain, limiting the
usefulness of this approach.

An informative way of rewriting the filter which we shall need later is

FN−1 =(N + G)−1, (4.25)

so that

m̂ f =(PT(N + G)−1P)−1PT(N + G)−1d. (4.26)

The observant reader will notice that this form of the filtered estimator is
equivalent to an unfiltered map estimator based on the data model d =
Pm + n + g, where g is an extra Gaussian component with covariance G.
That is, an alternative way of implementing filtering is by assuming the
presence of extra noise. This leads to the same map estimator, but a sim-
pler form for the covariance: M = (PT(N + G)−1P)−1. However, for this
to be valid the extra noise must actually be present in the data, otherwise the
covariance of the final map will be overestimated6. If signal contaminants
like bad weather and ground pickup could be accurately modeled as Gaus-
sians, this would be an optimal and efficient way of handling them. This is
unlikely to be the case in practice.

4.4.1 Binned maps

It is sometimes convenient to be able to make approximate maps of the sky
without paying the full computational cost of equation (4.17), for example
for diagnostic output of subsets of data going into the full map-making
procedure. A simple way of doing this is to ignore the non-diagonal ele-
ments of PT FN−1P, replacing it with its diagonal D. This leads to the fast
but biased map estimator

m̂b = D−1PT FN−1d. (4.27)

6Implementing filtering by assuming an extra noise component when it is not actually
present is equivalent to assuming that FN−1 = FN−1F when using a soft filter.
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In the absence of filtering and differential detectors, this is equivalent to
equation (4.13), but filtering inevitably biases the resulting map, producing
characteristic stripes and shadows around strong sources.

4.5 Filters

The job of the filters is to remove parts of the data that cannot be incorpo-
rated into the noise model, either because it is not Gaussian, not stationary,
or too poorly known. Common effects that need to be filtered out include
atmospheric disturbances, sidelobe pickup from the ground and the sun,
glitches in the electronics, etc. (see section 2.1.2). A good filter should re-
move as much as possible of these effects while removing as little as pos-
sible of the actual signal7 and this requires a rough model for where the
effects appear, such as a frequency range, certain time intervals, etc., so
that these regions can be specifically targeted.

Since we assume N to be diagonal in Fourier space, filters with the same
property can be much more efficiently implemented than other, more gen-
eral types. We will therefore decompose the full filter into a frequency filter
and a general filter.

4.5.1 Frequency filters

A frequency filter can be represented as a power spectrum Fdd′( f ) with a
value close to zero in contaminated regions and close to one outside. We
have already seen that the noise itself can be represented as a power spec-
trum Ndd′( f ). These are simply the diagonals of the Fourier space covari-
ance matrices, so (leaving out the detector indices in the following)

(FN−1)tt′ = ∑
f
F−1

(t−t′) f F( f )N( f )−1

(FN−1F)tt′ = ∑
f
F−1

(t−t′) f F( f )2N( f )−1. (4.28)

So effectively frequency filters simply act as an update to the noise power
spectrum, producing the two new effective spectra N−1

F ≡ FN−1 and N−1
FF ≡

FN−1F.
For example, to completely suppress every frequency below the fre-

quency α, one would use F( f < α) = 0 and F( f ≥ α) = 1. See figure 4.1
for an illustration of this.

While one is theoretically free to choose any F( f ), correlation length
considerations prevent us from choosing a shape with too sharp transitions.

7There is a trade-off between statistical and systematic error here. More aggressive fil-
tering will decrease systematic systematic effects but increase error bars by removing more
signal.
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Figure 4.1: Frequency filters are straightforwardly implemented as mode-
wise multiplication with the inverse noise power spectrum. The x and y
axes are frequency and inverse power in arbitrary units, respectively.

This is illustrated in figure 4.5.1. We have found a 1/f-type filter F( f ) =(
1 +

[
f

fcut

]αcut
)−1

to provide a reasonable trade-off between sharpness in
the two domains.

4.5.2 General filters

When the filters are not diagonal in frequency domain, we cannot simply
merge F with N, and must find another way of implementing the filter.
The filtered estimator is built up from three sub-expressions given in equa-
tions (4.19,4.20,4.21), and using equation (4.25) we can express these as

r f =PT(NF + G)−1d (4.29)

A−1
f =PT(NF + G)−1P (4.30)

A−1
f f =PT(NFF + G)−2NFFP. (4.31)

This form is amenable to manipulation with the Woodbury matrix identity
[30, 31]

(A + UCV)−1 =A−1 − A−1U(C−1 + VA−1U)−1VA−1. (4.32)

The identity is effectively a prescription for how to find (A + UCV)−1 if
you already know A−1 without needing to invert A−1. This comes at the cost
of needing to invert the matrix C−1 + VA−1U, so for this expansion to have
any point, C must be a much smaller matrix than A,

How can this be used in practice? Consider the case where we have
a small number of basis vectors {~Ui} which span our model for the con-
tamination g. This could, for example, be a set of Legendre polynomials in
terms of the azimuth α: Uti = Pi(2 αt−αmin

αmax−αmin
− 1), or perhaps a set of time

steps τi which contain a strong glitch: Uti = δτit. We can then build up g as
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Figure 4.2: The shape of the frequency filter greatly affects the correlation
length, which drives the main computational cost of building the pixel co-
variance matrix. Shown in the first panel are three different inverse power
spectra, corresponding to no filter, a hard filter and a soft filter respectively.
In the second panel, the inverse time correlation functions of the same three
cases are shown. For the hard filter, the correlation never falls below 1% of
the maximal value in this example, meaning that the correlation length is
greater than the length of the time-ordered data.

gt = Utiγi, with covariance 〈γγT〉 ≡ C, giving G ≡ 〈ggT〉 = UCUT, which
is of the form we need for the Woodbury identity.

Note that we are not assuming that the covariance G is a good model
for the contamination here – if we had a good model of it we could treat
it as a noise component instead8. Instead, what is being assumed here is
that G is much larger than the variance of the spurious signal, so that to a
good approximation the latter no longer matters. A simplifying assump-
tion that guarantees this is to let the nonzero parts of G → ∞ by setting
C−1 = 0. In addition to removing C from equation (4.32), it also results in
(NFF + G)−2NFF = (NFF + G)−1, greatly simplifying the application of the
Woodbury identity to equation (4.31).

Applying this to equations (4.29,4.30,4.31), we get

r f = PT N−1
F d− PT N−1

F U(UT N−1
F U)−1UT N−1

F d (4.33)

A−1
f = PT N−1

F P− PT N−1
F U(UT N−1

F U)−1UT N−1
F P (4.34)

A−1
f f = PT N−1

FF P− PT N−1
FF U(UT N−1

FF U)−1UT N−1
FF P. (4.35)

The first terms here are analogous to those from the filterless estimator
(4.15,4.16), while the second term corresponds to a post-hoc update. Defin-
ing rFu ≡ PT N−1U, rFFu ≡ PT N−1U and N−1

Fu ≡ UT N−1
F U, N−1

FFu ≡ UT N−1
FF U,

8See section 4.4.
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this simplifies somewhat to

r f = PT N−1
F d− rFuNFuUT N−1

F d (4.36)

A−1
f = PT N−1

F P− rFuNFurT
Fu (4.37)

A−1
f f = PT N−1

FF P− rFFuNFFurT
FFu. (4.38)

This update is dominated by the cost of calculating the two ruNurT
u terms,

which will be cheap as long as the number of basis functions is kept low,
and has the additional advantage that general filters can be added to an
existing program simply by adding a small section for updating r f , A f and
A f f .

4.6 Practical implementation of the map-making equa-
tions

We saw in the previous section that the filtered map estimator m̂ f in rough
steps can be described as

1. Apply the Fourier filters to the noise covariance

2. Build the components of the map-making equations by projecting
into pixel space with P

3. Apply the general filters to these

4. Solve for the map and its covariance

Most of these operations involve straightforward matrix operations, but
operations involving the response matrix P need to be tailored to take into
account its sparsity in order to avoid prohibitive computational cost. P
appears in two types of products: PTDV, where D is a Fourier-diagonal
matrix and V is a dense matrix; and the heavier operation PTDP.

4.6.1 Implementing PTDV

By using equation (4.7), we see that

W ≡PTDV ⇒
Wiα I = ∑

dt
Pdtpα[DV]dtI

= ∑
dth
ψdhtαδipdht [τDV]dtI . (4.39)
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The detector time response function is stationary, so τ is well-approximated
as diagonal in frequency space, as is D. The product in the brackets can
therefore be efficiently calculated with fast Fourier transforms:

[τDV]dtI = ∑
f t′d′
F−1

t f (τdf f Ddd′ f fF f t′Vd′t′ I). (4.40)

This means that support for detector time response functions comes almost
for free.

To be useful equation (4.39) needs to be reorganized to exploit the spar-
sity encoded in the Kronecker delta. This results in the following algorithm

W = 0
for all d, t,α, I, h do

Wpdhtα I += ψdhtα[τDV]dtI
end for

4.6.2 Implementing PTDP

Starting again from equation (4.7), we find

W ≡PTDP
Wi jαβ = ∑

dd′tt′
PdtiαDdd′tt′Pd′t′ jβ

= ∑
dd′tt′hh′

ψdhtαδipdht [τ
TDτ ]dd′tt′δ jpd′h′ t′ψd′h′t′β. (4.41)

As before, the product in the brackets can be computed efficiently in Fourier
space:

[τTDτ ]dd′tt′ = ∑
f
F−1

(t−t′) fτdf f Ddd′ f fτd′ f f . (4.42)

Using the sparsity in equation (4.41) and the fact that equation (4.42) only
depends on ∆t = t− t′, we arrive at

W = 0
for all d, d′, t, h, h′,α,β do

for −tcorr ≤ ∆t ≤ tcorr do
Wpdht pd′h′(t+∆t)αβ

+= ψdhtα[τTDτ ]dd′∆t0ψd′h′(t+∆t)β
end for

end for

This algorithm is often the most expensive part of map-making, and
since its computational time is proportional to the time correlation length
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tcorr, the time difference where τTDτ becomes negligible, this puts con-
straints on the form of D and τ (refer to figure 4.5.1 for an illustration of
this).

4.6.3 Solving the map-making equation

Equation (4.22) for solving for the final map and its covariance matrix con-
sist of a straightforward dense matrix operation9, and can be handled by
a linear algebra package like LAPACK10 [35]. In principle the matrices
involved are all symmetric and positive definite, and could be efficiently
solved by using Cholesky factorization. Sadly, this is sabotaged by the ef-
fect of filtering, which tends to make the covariance matrix poorly con-
ditioned or singular. For example, a high-pass filter which assigns zero
weight to low-frequency modes will make the average of the map com-
pletely indeterminate. The map covariance matrix will therefore have an
infinite eigenmode corresponding to the average of the map. Similar ef-
fects apply to a lesser degree to other modes that are damped by filters11

One must therefore use slower, more robust methods such as eigenvalue
decomposition.

4.6.4 Implementation in the QUIET pipeline

Table 4.1 summarizes the steps for implementing the filtered map estima-
tor m̂ f . These steps are implemented in two components of the QUIET
maximum likelihood pipeline.

9If one is only interested in the map itself, and not its covariance, these equations can
be solved without actually needing to store or invert large matrices by using conjugate
gradients [32]. But one ignores the covariance matrix at ones peril. As I will describe in
the section on postprocessing, a map that is both filtered and unbiased will contain large,
correlated noise modes which will be given undue weight if one does not have covariance
information.

10One of the weaknesses of maximum likelihood map making is the expense of storing
and operating on the matrices involved, which will easily grow larger than what is practical
to handle with LAPACK. This can be mitigated by using parallel solvers such as those in
ScaLAPACK [33] and Elemental [34].

11Cross-coupling by scanning the same part of the sky in several different directions will
reduce the degeneracy for other modes.
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N−1
F = FN−1 eq. (4.28)

N−1
FF = FN−1F

r = PT N−1
F d alg. (4.6.1)

A−1
f = PT N−1

F P alg. (4.6.2)
A−1

f f = PT N−1
FF P

rFu = PT N−1
F U alg. (4.6.1)

rFFu = PT N−1
FF U

N−1
Fu = UT N−1

F U
N−1

FFu = UT N−1
FF U

r –= rFuNFuUT N−1
F d

A−1
f –= rFuNFurT

Fu

A−1
f f –= rFFuNFFurT

FFu

m̂ f = A f r eq. (4.22)
M f = A f A−1

f f A f eq. (4.24)

Table 4.1: Summary of the steps needed for calculating the filtered estima-
tor m̂ f .

Building r, A−1
f and A−1

f f is done in the program tod2map, which con-
sists of about 4000 lines12 of Fortran 90 code, which processes constant ele-
vation scans in parallel using MPI, and co-adds these into the final r, A−1

f

and A−1
f f . The computation time for this step scales linearly with the total

length of the time-ordered data involved, and required ∼ 104 CPU hours
to process all the CMB patches in the Q-band analysis, and ∼ 5 · 104 CPU
hours for the W-band analysis due to the larger amount of data involved.

In addition to the use of parallelization, tod2map received a large speedup
through the use of data decimation. The algorithmic complexity of this part
of the map-making algorithm isO(NsampNcorrNd fd), where Nsamp is the to-
tal number of samples per detector, Ncorr is the noise correlation length,
measured in samples, Nd is the total number of detectors, and fd is the av-
erage fraction of these that each detector is correlated with. Both Nsamp
and Ncorr scale with the sampling rate of the time-ordered-data, and conse-
quently one can achieve a quadratic speedup simply by reducing the sam-
pling rate.

Given a typical sky scanning speed v and a Gaussian beam with a stan-
dard deviation of σ = σFWHM(8 log(2))− 1

2 , the time-ordered data will be

12This number does not include supporting libraries that are shared with other parts of
the pipeline.
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smoothed by

bTOD( f ) =e−
1
2

f 2σ2

v2 , (4.43)

which has a typical width of σtod = v
σ

. For QUIET, v ∼ 1◦/s13, giving
σtod = 5.2Hz in the Q-band and 12 Hz in the W-band. The sampling rate
must be at least twice as high as the highest frequency one wishes to repre-
sent, so these numbers correspond to sampling rates of 10.4 Hz and 24 Hz
respectively, which are both significantly lower than QUIET’s native sam-
pling rate of 50 Hz. This led us to downsample the TOD to 25 Hz in the
W-band analysis, resulting in a factor 4 speedup.

Memory-wise, the cost is driven by the need to store the two A-matrices,
though their symmetry permits us to only store half of each. To avoid artifi-
cial loss of resolution due to pixelization, the pixels should be significantly
smaller than the beam, which in the Q- and W-bands have a FWHM of 27’
and 12’ respectively14. We therefore require a HEALPix Nside of at least 256
and 512 corresponding to a pixel diameter of 13.7’ and 6.9’ for the two fre-
quency bands. For a typical QUIET CMB patch, this results in ∼ 104 pixels
in the Q-band and ∼ 4 · 104 in the W-band, which coupled with two po-
larization components per pixel in the case of a polarization only analysis
results in ∼ 2 · 104 and ∼ 8 · 104 degrees of freedom in the map, and the
square of these numbers in the matrices. Using single-precision (4 bytes
floating point numbers) for the matrices, this amounts to about 1.5 GB (25
GB) of memory to store one full matrix for the Q-band (W-band) analysis.

4.7 Biaslessness and deconvolution

The estimator m̂ f described in the previous sections was constructed to be
unbiased even in the presence of filters. The immediate effect of the filters is
to scale parts of the signal down (FN−1d), and heavily filtered signal com-
ponents are effectively eliminated by this. In order to recover an unbiased
map, the filters must be subsequently unapplied. In time (or frequency) do-
main, this could be done without loss of sensitivity by simply multiplying
by (FN−1)−1, but the projection operator P has the effect of mixing noise
modes, introducing extra noise in the down-scaled modes. When the fil-
ters are unapplied ((PT FN−1P)−1), this noise is scaled up together with the
signal, resulting in high-noise modes in the final map.

Unbiased filtered map-making is therefore a form of deconvolution,
completely analogous to the process of deconvolving the instrument beam
from the map. In the case of a beam, the dampened modes correspond

13The telescope scans at 2◦/s in azimuth, which at a typical elevation of 60◦ corresponds
to 1◦/s on the sky.

14See section 2.
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to the small scales, and deconvolving these produces very high amplitude
small-scale noise. In contrast, for unbiased map-making with a high-pass
filter the dampened modes correspond to large scales, and deconvolution
results in large-scale, i.e. correlated, noise modes. See figure 4.3 for an
illustration of these effects.

The full effect of these deconvolution-induced noise modes is described
in the covariance matrix, which ensures that they are assigned no more
weight than they are due. However, the presence of these modes makes
visual inspection of the maps very difficult. When plotting the maps, we
therefore apply an eigenvector-filter, defined by

mcut =VKVTm. (4.44)

Here V is the eigenvector matrix of the map m’s covariance matrix M,
M = VEVT, E is a diagonal vector consisting of M’s eigenvalues, and
Ki j = kiδi j with ki = (Ei < ε).15 The plots in the results section employ
ε = 100min(E), which typically results in ∼ 20 − 40 large scale modes
being cut.16

The eigenvector-filter is a filter based purely on the noise properties of
the map. If one is willing to make assumptions about the signal itself, one
can do better by filtering based on the signal-to-noise ratio using a Wiener-
filter [36]. If the signal is taken to be Gaussian with covariance matrix S
(see section 5.1.1), then the Wiener filtered map is given by

mcut =(1 + S−1N)−1m. (4.46)

Making assumptions about S, one of the quantities one is trying to mea-
sure, is dangerous. For example, if the fiducial power spectrum does not
contain any B-modes, then neither will the filtered map. It is therefore
best to estimate the Wiener-filtered map jointly with the covariance matrix.

15I here use the C language convention that true/false maps to 1/0. Thus ki is 1 if Ei < ε,
and otherwise 0.

16While primarily a means of visualization, it is also possible to use this as a cut before
further data analysis. This could for example be done if one has evidence that certain eigen-
modes are contaminated by ground pickup, atmosphere, or similar17. In this case, the cor-
responding modes in the covariance matrix should be assigned infinite variance, reflecting
the fact that the value of these eigenmodes is being ignored:

M−1
cut =VKVT M−1VVT . (4.45)

17If there were a 1-1 correspondence between filtered Fourier modes and noise modes in
the final map, all the filtered pollution would be completely restored when deconvolving
the map (but would still be assigned a huge variance in the covariance matrix). However, at
least in the case of more than a single CES being analysed, there is no 1-1 correspondence,
and each mode will be a linear combination of different frequencies in the TOD. In this
linear combination, the heavily filtered modes weigh little, and may thus be a small part of
the deconvolved result.



4.8. RESULTS 83

The Gibbs sampling procedure described in section 5.1.3 produces Wiener-
filtered maps based on an unbiased estimate of the power spectrum as a
by-product of the map-sampling step.

4.8 Results

4.8.1 CMB maps

Temperature and polarization maps for QUIET’s four CMB patches are
shown in figures 4.4-4.7. These have all been subjected to a mild eigenvector-
filter in order to remove large, correlated noise modes which mostly corre-
spond to multipoles lower than the 25 ≤ l ≤ 1200 that QUIET can com-
fortably measure with its small patch size. This typically results in the∼ 30
noisiest modes out of ∼ 6 · 104 being removed. An example of what these
modes look like is shown at the bottom of figure 4.4.

The figures compare the QUIET maps with WMAP at the same frequen-
cies after removing the same modes. In the temperature maps the CMB
anisotropies are clearly visible, with both QUIET and WMAP observing
the same pattern. QUIET does not quite reach WMAP’s noise levels, but as
described in the calibration and instrument chapter, the temperature maps
are based on only∼ 3% of the detectors and a temperature cut efficiency of
only ∼ 30%, so this was to be expected.

In polarization, however, the noise level is low enough to faintly make
out the ∼ 5µK E-mode polarization signal from the second and third peak
of the EE-power spectrum by eye. This is most clearly visible in the W-band
map of the first CMB patch (and in the wiener-filtered version of the patch,
which can be seen in figure 4.8). The corresponding WMAP maps are here
completely noise dominated.

Several point sources are visible in the maps, with CMB patch 2 be-
ing most affected, containing four strong sources and several weaker ones.
These are easily visible in the Q-band temperature maps, and one of the
sources is even visible in polarization. We therefore applied a point source
mask to the maps before further analysis for the Q- and W-band tempera-
ture analysis and the Q-band polarization analysis.

At the time of writing, the W-band first results article has still not been
released, and these maps should therefore be considered preliminary and
may be subject to change.

4.8.2 Foreground maps

Figures 4.9-4.10 show polarization maps for QUIET’s two foreground patches.
In galactic coordinates, the galactic plane is aligned in the +Q direction and
its axis of rotation in the -Q direction, so it is not surprising that the galactic
emissions are predominantly characterized by Stokes Q. The emissions are
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Figure 4.3: The effect of deconvolution on noise. Top left: Input CMB map,
based on the power spectrum shown below. Top middle: Map after adding
the effects of the beam and noise. This map is biased, as shown by the cor-
responding power spectrum is shown in green below. Top right: The map
after deconvolving the beam is unbiased, but is dominated by noise at small
scales, shown in blue below. The bottom row shows the same sequence for
filters instead of a beam. The left map is the input, the middle is the biased
map PT FN−1d, and the right is the unbiased map (PT FN−1P)−1PT FN−1d.
Again, the deconvolution has amplified noise modes that now dominate
the map, but these are now large-scale modes due to the high-pass and
azimuth filters.
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Figure 4.4: Maps for CMB patch 1, centered on galactic l = 292.2◦, b =
22.8◦, with a diameter of ∼ 25◦. The columns are temperature (left), Stokes
Q polarization (middle) and Stokes U polarization (right). Row 1-2: The
QUIET Q-band result compared to the WMAP Q-band map, both at Nside =
256. Row 3-4: The QUIET W-band result compared to the WMAP W-band
map, both at Nside = 512. An E-mode signal is faintly visible in the QUIET
maps, particularly in the W-band map at small scales. The temperature
map is consistent with WMAP, but a bit more noisy. Row 5: Maps of the
high-noise modes removed by the eigenvalue filter for QUIET’s W-band
maps. While high in amplitude, these maps contain only . 50 very high
variance degrees of freedom.
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Figure 4.5: Maps for CMB patch 2, centered on galactic l = 243.2◦, b =
−35.3◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N is lower here than for patch
1, but it is still possible to make out an E-mode signal. A polarized point
source is visible in the Q-band map. This and several other point sources
were masked out before the power spectrum was estimated. The tempera-
ture map is consistent with WMAP, but noisier.
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Figure 4.6: Maps for CMB patch 3, centered on galactic l = 304.6◦, b =
−69.1◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N is lower here than for patch 1,
but it is still possible to make out an E-mode signal in the central, lowest-
noise region. The temperature map is consistent with WMAP, but noisier.
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Figure 4.7: Maps for CMB patch 4, centered on galactic l = 7.0◦, b =
−62.0◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N very low here due to the
limited exposure time. The thin band of zero signal at the bottom of the Q-
band maps are pixels that were cut by the eigenvalue filter due to having
excessive noise. The temperature map is consistent with WMAP, but much
noisier.
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Figure 4.8: Wiener-filtered maps of CMB patch 1 from the Gibbs sampling
chain. The top row shows the Stokes Q and U components from left to right,
with a clear E-mode signature (“+”-shape in Q, “x”-shape in U) visible.
The bottom row shows maps of the E and B modes, confirming a strong
detection of E-modes, while the B-modes are consistent with noise. Figure
courtesy of H. K. K. Eriksen.



90 CHAPTER 4. MAP MAKING

several times stronger in the Q-band than W-band, but their shape is differ-
ent in the two bands, with the emissions being more concentrated towards
the plane of the galaxy in the W-band. This is consistent with a transi-
tion from synchrotron dominance to a weak dust-dominance when going
from Q to W-band, with the W-band being close to the foreground min-
imum. Most of the galactic emissions are in the +Q-direction, which for
synchrotron radiation indicates electrons spiraling in a north-south mag-
netic field. However, in the galactic center there is a small, vertically elon-
gated region with very strong -Q emissions which indicates a horizontal
magnetic field here. This feature is part of a structure called the galactic
center lobe [37, 38, 39], and has been previously imaged in the Q-band at
higher resolution but lower sensitivity than QUIET [37], revealing it to be a
thin, vertical and plume-like feature.

The same features are visible in the WMAP Q and W-maps, but the
signal-to-noise is quite low, particularly in the W-band. Due to the steep
spectral index (s ∝ να, α ∼ −3) of synchrotron, much higher signal-to-
noise synchrotron maps are available at lower frequencies. In the bottom
row of the two figures, I therefore plot the WMAP Ka-band polarization
maps for comparison. These have a similar signal-to-noise as the QUIET
Q-band maps, and agree well with these considering the differences in an-
gular resolution.

Note that the QUIET foreground maps shown here are still preliminary.
In particular, QUIET’s temperature-to-polarization leakage, which is at ∼
1% in the TOD, but much lower in map space due to frequent rotation
of the polarization angles, has not been corrected here. Hence, regions of
strong, unpolarized emission may show up as a spurious component in
these polarization maps. This will be rectified in a future QUIET article on
foregrounds.
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Figure 4.9: Maps of QUIET’s central galactic patch, centered at l = 0.1◦, b =
−0.1◦, with a diameter of ∼ 20◦. The QUIET Q- and W-band results are
consistent with WMAP, but WMAP’s high noise level makes a visual com-
parison difficult. I therefore provide the high S/N WMAP Ka-band map
in the last row. The QUIET Q-band and WMAP Ka-band maps are both
synchrotron-dominated, and show excellent agreement.
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Figure 4.10: Maps of QUIET’s other galactic patch, centered at l = 329◦, b =
0◦, with a diameter of ∼ 20◦. The columns are the Q and U Stokes param-
eters respectively. The top two rows show the QUIET and WMAP maps
for the Q-band, while the next two rows have the corresponding maps for
the W-band. WMAP is consistent with QUIET, but is very noisy, making
comparison difficult. However, as synchrotron dominates below∼ 80GHz,
and has a steeply falling spectrum, the WMAP Ka-band map is signal dom-
inated, allowing for a straightforward visual comparison.



Chapter 5

Power spectrum and parameter
estimation

Though map-making is a necessary step of the analysis pipeline, and maps
are very useful for e.g. foreground analysis, they are not the final scientific
goal of CMB experiments. As discussed in chapter 1, the CMB anisotropies
are understood to be ultimately sourced by quantum fluctuations set up
during inflation, and while the value of these fluctuations at any given po-
sition is random, their statistical distribution is governed by the physics
from inflation to the surface of last scattering, providing us with a powerful
probe of the physics of the early universe. If these fluctuations are Gaus-
sian, homogeneous and isotropic as indeed they seem to be, then they can
be completely described by a covariance matrix which is block-diagonal in
spherical harmonic basis1:

alm ≡(aT,lm, aE,lm, aB,lm)T ∼ N(0, Cl) (5.1)

〈aX,lmaY,l′m′〉 =CXY
l δll′δmm′ , (5.2)

The indices X, Y run over T, E, B, and the power spectrum Cl is the {T, E, B}×
{T, E, B} covariance matrix for a given multipole. aT,lm are the normal
spherical harmonic coefficients of the temperature map mT, and aE,lm, aB,lm
are rotationally invariant linear combinations of the spin-weighted spher-
ical harmonic coefficients of the linear polarization fields mQ and mU , and

1A word on notation here: Due to the polarization degrees of freedom, alm is not a
scalar quantity, but a vector of length Npol. Similarly, Cl is an Npol × Npol matrix. I will
use the notation C to mean the Nl Npol × Nl Npol matrix with Cl on the diagonal, such that
CXY

l ≡ (C)XY
ll .

93
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are given by [11]

aT,lm =
∫

Ω
Y∗lm(n̂)mT(n̂)dΩ (5.3)

aE,lm = −1
2

∫
Ω

[
Y∗2,lm(n̂) + Y−2,lm(n̂)

]
[mQ(n̂) + imU(n̂)] dΩ (5.4)

aB,lm =
i
2

∫
Ω

[
Y∗2,lm(n̂)−Y−2,lm(n̂)

]
[mQ(n̂) + imU(n̂)] dΩ. (5.5)

For a given cosmological model one can calculate the predicted power
spectrum in terms of that model’s parameters2, and observational bounds
on the power spectrum can therefore be used to constrain the cosmologi-
cal parameters, or exclude the model altogether. Our primary interest in
the sky maps is therefore to use them to estimate the power spectrum and
ultimately the cosmological parameters.

5.1 Power spectrum estimation

Starting from equation (5.1), we see that given the harmonic coefficients,
the likelihood for the power spectrum is

L(Cl) =P(alm|Cl) = ∏
m

1√|2πCl |
e−

1
2 aT

lmC−1
l alm , (5.6)

corresponding to an independent Wishart distribution for each multipole
in the power spectrum:

Cl ∼W
(

(2l + 1)−2
∑
m

almaT
lm, 2l + 1

)
. (5.7)

The spherical harmonics coefficients used in these expressions are defined
in equations (5.3-5.5), and while these appear to require O(N2

l Npix) ∼
O(N2

pix) calculations, they can actually be implemented much more effi-

ciently due to the existence ofO(Npix
3
2 ) algorithms such as those provided

in the HEALPix package [26]3. Thus, for full-sky noise-less maps (or maps
with uniform, uncorrelated noise), the full likelihood of the power spec-
trum can be very efficiently calculated.

However, in real applications the map, and thus its harmonic coeffi-
cients, will not be exactly known. Typically, the noise in the map will be

2This can be done by using a numerical Boltzmann solver such as CAMB [40], CMBfast
[41] and CMBEasy [42].

3Asymptotically faster algorithms are under active research [43, 44], and Fast Legen-
dre Transform-based algorithms promise an asymptotic complexity of O(Npix log(Npix)2).
However, current implementations of these algorithms have extremely high memory over-
head and large pre-factors, which outweighs their advantages in most cases.
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Gaussian with variance varying from pixel to pixel, and as we saw in chap-
ter 4, instrument 1/f-noise and filters result in the noise in different pixels
and stokes parameters being correlated, resulting in a dense pixel covari-
ance matrix. Additionally, part of the sky will usually be masked out due
to lack of observations or foreground contamination, effectively leading to
infinite variance in those pixels, and the telescope optics smoothes out the
small scales of the map, biasing the higher multipoles low.

5.1.1 Brute force evaluation

The most straightforward approach for dealing with these complications
is brute-force pixel-space evaluation of the likelihood. The covariance be-
tween the signal components at two points on the sky, m(n̂1) and m(n̂2),
depends on the power spectrum as

S(n̂1, n̂2) =R(n̂1, n̂2)
{

∑
l

2l + 1
4π

λl(n̂1 · n̂2, blClbl)
}

R(n̂2, n̂1) (5.8)

λl(β, Cl) =

 dl
00CTT

l dl
20CTE

l −dl
20CTB

l
dl

20CTE
l ∆l

+CEE
l + ∆l−CBB

l −dl
2−2CEB

l
−dl

20CTB
l −dl

2−2CEB
l ∆l−CEE

l + ∆l
+CBB

l

 . (5.9)

Here, R(n̂1, n̂1) is a matrix representing the rotation of the Stokes param-
eters when under parallel transport from n̂1 to n̂2, bl is a diagonal matrix
with the temperature and polarization beams bT,l , bE,l and bB,l on the diag-
onal, and dl

mm′(β) are Wigner d-matrices, and ∆l± ≡ 1
2 (dl

22 ± dl
2−2) [45].

When evaluated at the pixel locations in the map, equation (5.8) pro-
vides us with the pixel covariance matrix corresponding to a given power
spectrum, which combined with the noisy map data yields the following
likelihood

L(Cl) =P(m|C) =
e− 1

2 mT [S(C)+M]−1m√|2π [S(C) + M]| . (5.10)

From this, the maximum likelihood solution can be found with a nonlinear
search such as Newton-Raphson iteration, and error bars can be found by
grid evaluation, Monte Carlo sampling or through a local Gaussian approx-
imation [46]. These are all quite heavy, as they involve covariance matrices
of size (Nl Ncomp)2, which are needed because limited sky coverage, corre-
lated noise and filtering induce correlations between nearby multipoles.

Binning

The complication of correlated multipoles can be removed by binning sev-
eral of them together, such that

Cb = ∑
lXY

PXY
bl CXY

l , (5.11)
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where PXY
bl is a projection operator down to the binned space, with a typical

choice being (following [47])

PXY
bl =(∑

l∈b
)−1 l(l + 1)

2π
δ[XY][XY]b , if l ∈ b, otherwise 0. (5.12)

That is, each bin is the average of the flattened4 spectrum in multipole
ranges, with the different spectra and cross-spectra mapping on to differ-
ent bins (i.e. not being averaged together). Expanding back from bins to
multipoles can be done with the operator

QXY
lb =

2π
l(l + 1)

δ[XY][XY]b , if l ∈ b, otherwise 0, (5.13)

i.e. piecewise constant interpolation of the flattened spectrum. With suffi-
cient bin size, each bin will be approximately independent, removing the
need for evaluating marginals and covariances.

Direct evaluation of cosmological parameters

Instead of estimating the power spectrum, it is also possible to directly es-
timate cosmological parameters, and in many ways the latter is easier than
the former due to the much smaller number of free parameters, typically of
the order of 5 - 10. In this case, no binning is necessary. Since the likelihood
for a given power spectrum can be calculated directly, the likelihood for a
set of parameters θ is simply

L(θ) =L(C(θ)). (5.14)

As for the power spectrum itself, the maximum likelihood point can be effi-
ciently found using a non-linear search, and the likelihood can be mapped
out using grid evaluation (when the number of parameters is small), or by
MCMC sampling such as that provided by CosmoMC [48], or newer ap-
proaches such as MultiNest [49].

Practicality

While straightforward and exact, this method scales poorly with the num-
ber of pixels. The cost of an evaluation of the likelihood is driven by the cal-
culation of the determinant, which scales as O(n3), where n = NpixNcomp
is the number of degrees of freedom in the map, so each doubling of the
angular resolution results in 64 times higher cost.

4The power spectra have a natural scaling of 2π
l(l+1) . Flattering the spectrum refers to

dividing by this produces a much more slowly varying spectrum, which is more suited for
binning. The flattened spectrum is also the standard when plotting the power spectrum.
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The speed of the algorithm can be somewhat improved by performing
a change of basis [50]. Let R = N−1S0N−1, where S0 is a fiducial signal
covariance matrix, and compute its eigenvalue decomposition QΛQT = R.
This provides an orthogonal basis based on signal-to-noise modes, which
allows one to truncate the basis at the signal-to-noise level corresponding to
the required accuracy, resulting in a smaller number of degrees of freedom
n′. In the truncated basis, S + N → S′ + N′ = Q′T SQ′ + Q′T NQ′, and
m → m′ = Q′Tm, where Q′ is the n × n′ truncated eigenvector matrix.
This basis only needs to be calculated once, and can provide a substantial
performance boost when n′ is significantly smaller than n. Low signal-to-
noise modes are generated by filtering, and may also be present due to the
scanning pattern, and with QUIET’s filters and scanning strategy a relative
eigenvalue threshold of 10−8 resulted in n/n′ ∼ 2.5, for a speedup of a
factor of 15.

Notwithstanding this optimization, the practical limit for this method
is of the order 105 − 106 degrees of freedom with current clusters. For
comparison, a full-sky polarization map with a HEALPix Nside parame-
ter of 2048, corresponding to a pixel resolution of 1.7 arcminutes, has n ∼
1.5 · 108. So for experiments which need both high sky coverage and high
resolution, like Planck, a cheaper method is needed.

5.1.2 Pseudo-Cl estimation

The idea of Pseudo-Cl (PCL) power estimation as implemented in the MAS-
TER algorithm [47], is to divide the estimation of C into two steps: A fast
but biased estimator producing an initial estimate C′, and a correction step
which compensates for the bias of that estimate. In general the true spec-
trum and the initial estimate can be related through

C′ = f (C), (5.15)

where the function f represents the effect of creating a realization of the
spectrum and the effect of telescope optics, filtering, mapmaking and the
biased power spectrum estimator. Most of these steps are linear in the map,
and thus quadratic in power. Hence we cannot expect f to be a linear func-
tion. However, it is still possible to approximate it as such, and this approx-
imation turns out to work well in practice,

〈C′b〉 ≈∑
b′
αbb′Cb′ +βb. (5.16)

Here b are the power spectrum multipole and polarization component bins,
and αbb′ and βb are coefficients that approximate the effect of f . Provided
estimates ofα andβ, which can be determined using signal-only and noise-
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only Monte Carlo simulations respectively5 the unbiased power spectrum
can be easily recovered by solving for C in equation (5.16):

Ĉ =α−1(C′ −β). (5.17)

In principle, this expansion has Nbin(Nbin + 1) parameters that must
be determined through simulations. However, most of the non-diagonal
structure in α is due to limited sky coverage, an effect which can be calcu-
lated analytically in the case where C′ is the pseudo-spectrum of the map.
The pseudo-spectrum is defined as the observed spectrum of the weighted
map {wimi}. The weights are usually chosen to be wi = σ−2

i , where σi is
the noise level in pixel i, and their effect is to make the map well-behaved
(but biased) on the whole sky, allowing equations (5.3-5.5 and 5.7) to be
used. The result is the parametrisation

αbb′ = ∑
lXYX′Y′

PXY
bl MXX′YY′

ll′ bX′
l′ bY′

l′ Fl′QX′Y′
l′b′ . (5.18)

M here models the effect of the partial sky coverage, and is a function only
of the PCL map weighting w, b is the instrument beam, and F is the trans-
fer function, which incorporates the effect of biased map-making, filters,
correlated noise, etc. The task of estimating α is thus reduced to that of
estimating the transfer function.

The uncertainty of the resulting power spectrum estimate can deter-
mined using signal + noise Monte Carlo simulations based on a smooth
version of the output spectrum. Given a set of such simulations {Ci

b}, the
covariance of the estimator is

Covbb′ =〈(Ci
b − Ĉb)(Ci

b′ − Ĉb′)〉. (5.19)

The MASTER algorithm sketched above has become the most popu-
lar of power spectrum estimators currently in use, and is the only of these
that is currently capable of handling the high number of pixels involved
in high-resolution full-sky experiments like Planck. It also has the advan-
tage of being very flexible – any effect that can be efficiently simulated is
automatically taken care of by the transfer function, making it easy to e.g.
quantify the effects of new systematics as they are discovered. And due to
not needing unbiased maps and their covariance matrix like the brute force
method does, its memory requirements are also much smaller.

This convenience comes at the price of being sub-optimal, due in part to
not taking the full noise properties into account when weighting the map,

5Equation (5.16) is only approximate, which means that it matters slightly which input
spectrum is used for the simulations. This spectrum should therefore be a reasonable esti-
mate of the true spectrum. To protect against biasing oneself towards the fiducial spectrum,
the process can be iterated by starting over with the output spectrum as the new fiducial
spectrum.
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and approximate, because f (C) is not truly linear. The practical result of
this is that the uncertainty of the result is larger than for the brute force
method, and that the error bars are slightly inaccurate.

5.1.3 Gibbs sampling

It is possible to have both the optimality and exactness of the brute force
estimator while avoiding its O(n3) complexity. As in the PCL approach
above, the key to efficiency is to find a way to use the fast full-sky ex-
pressions in equations (5.3-5.5 and 5.7), as these benefit from the speed of

O(N
3
2
pix) full-sky spherical harmonics transformations. The PCL approach

to this is to fill in the missing parts of the sky with zeroes6, a choice which
makes it necessary to bias-correct the spectrum later. Gibbs sampling, on
the other hand, makes it possible to use the full-sky expressions by produc-
ing full-sky samples of what the noiseless CMB could look like, which are
then amenable to efficient spherical harmonics transformations [51, 52, 53].

Mathematically, this is based on the observation that

P(a, b, . . .) =P(a|b, . . .)P(b, . . .) ∝ P(a|b, . . .), (5.20)

which implies that given some sample (ai, bi, . . .) from the joint distribution
of (a, b, . . .), we can produce a new sample from the joint distribution by
drawing a new a from the conditional distribution P(a|b, . . .) and keeping
the others constant, producing (ai+1, bi, . . .). This can then be repeated for
each other parameter in turn. In the context of power spectrum estimation,
this allows us to jointly sample the power spectrum C and the CMB sky s
from P(C, s|m, M) through the iterative scheme

si+1 ←P(s|Ci, m, M)

Ci+1 ←P(C|si+1, m, M). (5.21)

The sky sampling step constructs a constrained realization of C given
the observed sky m and its covariance M′. Such a realization can be eco-
nomically produced by solving the system

(S−1 + M−1)s = M−1m + S−
1
2ω1 + M−

1
2ω2 (5.22)

through Conjugate Gradients iteration [51, 32]. ω1 and ω2 are here vec-
tors of independent samples from the standard normal distribution N(0, 1).
Conceptually, this amounts to Wiener-filtering m, and then adding enough
fluctuations to compensate for the bias in power introduced by the wiener
filter, resulting in a map with covariance S as required.

6Unobserved regions of the sky have infinite variance, making w = σ−2 = 0.
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The resulting map s is a representative sample of the full, noise-less sky
– the full effect of the noise in m is taken into account through the scatter
in {s}, and since subsequent steps are conditional on a given s, they do not
have to worry about the observed map or its noise at all. The second step
of the sampling, C ← P(C|s, m, M) = P(C|s), is therefore straightforward.
Equations (5.3-5.5 and 5.7) apply directly to s, allowing us to efficiently
sample a new power spectrum within the cosmic variance of the observed
map.

By sampling only from the conditional distributions, Gibbs sampling
allows a form of separation of responsibilities, letting each step in the sam-
pling chain care about a single effect only. This makes is easy to expand the
procedure with new effects, such as foreground separation.

Parameter estimation

The set of samples {C} contain all the information we have about the power
spectrum, together representing P(C|data). We can use this for cosmologi-
cal parameter estimation by testing the power spectrum given by a partic-
ular choice of parameters, C(θ), against P(C|data). However, this is com-
plicated by P(C|data) only being available as a set of samples, requiring
some binning and interpolation scheme, such as the Blackwell-Rao estima-
tor [54], to be able to evaluate the probability at the required point.

However, as with brute force likelihood evaluation, it is possible to re-
place the power spectrum C with the cosmological parameters θ as inde-
pendent variables. This results in the scheme

si+1 ←P(s|θi, m, M)

θi+1 ←P(θ|si+1, m, M). (5.23)

The result is a set of samples {θ, s} that directly provide the probability
of the parameters P(θ|data). As C is a function of θ, the first step is un-
changed from above. The second step differs in that the we do not have a
simple expression for θ(C), preventing us from simply drawing a C from
the distribution in equation (5.7), and translating it into a set of parame-
ters. But we can combine the probability density function of said Wishart
distribution with a short MCMC chain in θ to still sample θ ← P(θ|s) at
relatively low cost7.

7This is a planned feature in an upcoming version of H. K. K. Eriksen’s cosmological
Gibbs sampler Commander [55]. Long correlation lengths when sampling high S/N vari-
ables (like most cosmological parameters) was a barrier to direct cosmological parameter
estimation in Gibbs sampling previously, but this was solved in [52].
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Figure 5.1: A sketch of the three power spectrum estimation methods de-
scribed in this chapter. Top: Brute force maximum likelihood estimation.
The likelihood of a set of cosmological parameters is computed by translat-
ing them into a signal covariance matrix S via the power spectrum Cl and
the two-point correlation function C(r). The observed map m should then
be m ← N(0, S + M), which is evaluated directly in pixel space. Middle:
The MASTER pseudo-Cl estimator works by using simulations to compute
a transfer function Fl (and a noise bias, which is neglected here for sim-
plicity) which accounts for the bias introduced by the map-making and
filtering. This is then used to derive an unbiased spectrum from the data,
and the simulations also provide error bars. Bottom: Gibbs sampling jointly
samples P(θ, C, s|m, M) by iteratively sampling over the conditional distri-
butions. Only the sky sampling step actually involves the data.
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5.2 Application to QUIET

As described in section 2, the QUIET telescope performs deep scans of rela-
tively small parts of the sky, resulting in a relatively low number of pixels in
each patch, typically∼ 3 · 104, and twice that number of degrees of freedom
in the case of a polarization only analysis. It is this low number that allows
us to use the maximum likelihood map-making described in chapter 4 to
obtain both an unbiased map m and its noise covariance M. This makes it
possible in theory to use any of the three power spectrum/parameter esti-
mation methods described in the previous section, but our limited number
of pixels makes the brute force likelihood evaluation a natural choice, hav-
ing computational costs comparable to the map-making algorithm.

The average area of each of QUIET’s four CMB patches is ∼ 250 deg2

and this limited sky coverage sets up strong correlations in nearby mul-
tipoles. We therefore bin the spectra in bins of 50 multipoles (see sec-
tion 5.1.1), which makes the bins mostly independent (see figure 5.3). This
results in 9 bins for the Q-band analysis and 19 bins for the W-band anal-
ysis. Since these bins are only weakly correlated, a good approximation
of the likelihood is provided by the conditional distributions for each bin,
where the other bins are held fixed at the maximum likelihood point as
found through Newton-Raphson iteration. For each frequency, there are
6 spectra to evaluate (TT, TE, TB, EE, EB and BB), resulting in a total of
54 (114) slices being needed for Q (W). Mapping out these slices required a
few thousand likelihood evaluations, which is expensive but still less costly
than the map-making step.

Based on each slice, we extracted a 68% confidence interval by lowering
a likelihood threshold until 68% of the curve is above this likelihood, as
illustrated in figure 5.2. The mode as well as the upper and lower limits
found this way are what we report as the value and error bars for each bin.

For the tensor-to-scalar ratio we model the power spectrum as

Cl =Cscalar
l + Ctensor

l r, (5.24)

where we have assumed for simplicity that tensor- and scalar perturbations
have the same primordial spectral behavior. Cscalar

l is here the power spec-
trum in the absence of tensor modes, and Ctensor

l is the tensor-only spectrum
for the case r = 1, as provided by CAMB [40]. If we know Cscalar

l , we can
calculate Cl for each r and evaluate its likelihood using equation (5.10). But
in practice, Cscalar

l is among the quantities we are trying to estimate, and
must therefore be marginalized over to reflect our ignorance of it. In prac-
tice, this would involve an integral in as many dimensions as there are bins
in our power spectrum, which is unfeasible with brute force evaluation8.

8It would, however, be an automatic by-product if we used Gibbs sampling. This is one
of the major advantages of Gibbs sampling.
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Figure 5.2: Illustration of how the reported value and error bars for a power
spectrum bin are determined. The red curve shows the conditional distri-
bution for a single bin of the W-band EE spectrum, which we take as an
approximation of the marginal distribution for that bin. The reported value
for the power in this bin is the mode of the distribution, while the upper
and lower error bars are found by lowering a likelihood threshold (shown
in blue) until 68% of the likelihood (green shaded area) is above the thresh-
old.
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0 100 200 300 400 500
0

1

Figure 5.3: The bins used in the Q-band power spectrum analysis. Each bin
is 50 multipoles wide, and are centered on every multiple of 50 between 0
and 500. The horizontal bars show the location and extent of each bin, while
the curves show which multipoles contribute to each bin. A bin width of
50 is enough to ensure a low level of correlation between the bins. In the
W-band analysis, the same bin size is used, but the lmax used here is 1000.
This figure was computed for the PCL pipeline, but the level of correlation
between the bins is mostly due to the shape of the sky cut, which is the
same for both pipelines.

We therefore approximate the marginal with a partial conditional:

Cscalar
l ≈Cfix

l + Cmarg
l . (5.25)

Here the spectrum has been split into a part which will be held fixed at
the maximum likelihood value, and a part which will still be marginalized
over. We chose Cfix

l to be the multipoles l > 25 and Cmarg
l to be a single bin

containing the multipoles l ≤ 25, which is enough to make the marginal-
ization manageable.

Though the tensor-to-scalar ratio must necessarily be positive (as it is
the ratio of two positive quantities), the properties of the CMB maps only
depends on the combined power spectrum, and the likelihood above there-
fore assigns a nonzero value even to clearly unphysical negative values. We
can apply knowledge that r ≥ 0 as a prior P(r) ∝ Θ(r), where Θ(x) is the
Heaviside step function, which results in a posterior with these unphysical
values removed.

5.3 Results

As described in section 2, QUIET is sensitive to both the polarization and
overall intensity of the incoming radiation, but due to its focus on measur-
ing B-modes and the tensor-to-scalar ratio, the vast majority of its sensi-
tivity and analysis effort is concentrated on the polarization results. In the
absence of temperature information, the three available power spectra are
EE, EB and BB, which can bee seen in figures 5.4-5.6.

Of these, the EE spectrum is the most easily measured, and is sourced
by the same density perturbations that source the TT spectrum. EE is there-
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fore well constrained by the ΛCDM best fit to existing temperature exper-
iments, such as WMAP [6]. The EE spectrum has also been directly mea-
sured by several polarization experiments such as BICEP [17] and QUAD
[16], which were consistent with ΛCDM. As seen in figure 5.4, this is also
the case for the QUIET Q-band and W-band EE power spectra. The agree-
ment is especially striking in the W-band spectrum due to its small error
bars, and to my knowledge this is the most precise measurement of the
second peak of the EE power spectrum at this time.

The BB spectrum is expected to be produced by primordial gravita-
tional waves at low multipoles and by lensing [13] and possibly higher-
order effects like non-adiabaticity and magnetic fields at higher multipoles
[14]. Neither of these have as yet been detected, and only upper bounds
exist for the BB spectrum. As shown in figure 5.6, both QUIET data sets
are consistent with a non-detection of B-modes. This was to be expected
based BICEP and QUAD’s null-results, as these experiments have similar
sensitivity to QUIET. QUIET’s 95% upper limit on BB power is compared
with other current limits in figure 5.7. The QUIET W-band limits are seen
to provide the lowest upper bounds in the multipole range 150 ≤ l ≤ 400.

Like the BB spectrum, EB is expected to have a non-zero contribution
from lensed E-modes and possible second-order effects, but is not sensitive
to primordial gravitational waves. As seen in figure 5.5, QUIET observes
an EB power consistent with zero.

5.3.1 Temperature spectra

Figure 5.8-5.10 show the QUIET TT, TE and TB power spectra. These in-
clude data from the temperature maps shown in section 4.8.1, which have
relatively poor sensitivity compared to the polarization maps, and which
have less well understood systematics. They are therefore not a part of
the primary QUIET results, but they can still serve as a consistency check
for the polarization results. Taken together, the three spectra are consistent
with the ΛCDM expectations.

5.3.2 Foregrounds

In temperature (total power) emissions, the foregrounds are quite well known,
consisting of synchrotron radiation from electrons spiraling in magnetic
fields, free-free emission from electrons scattering off ions and dipole ra-
diation and thermal radiation from dust. The spectral behavior of these is
shown in figure 5.11.

The situation is less well known for polarization, but free-free and spin-
ning dust are not expected to be significantly polarized. Synchrotron emis-
sion, on the other hand, is 3%− 30% polarized, while thermal dust is po-
larized at the 1% − 6% level, leaving these as the dominant foregrounds
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Figure 5.4: The QUIET EE power spectrum based on data from all four
CMB patches. The W-band results are indicated using “+”-symbols with
1 sigma (green) and 2 sigma (red) error bars, while the Q-band results use
“x”-symbols with 1 sigma (purple) and 2 sigma (blue) statistical error bars.
These are compared with the best-fit ΛCDM model based on the WMAP
7-year data (light blue). The overall amplitude of the QUIET W-band spec-
trum shown here is calibrated based on the WMAP EE spectrum. Hence,
the ΛCDM best fit and the W-band spectrum necessarily agree on the over-
all amplitude. However, the shape of the power spectrum is independently
measured by QUIET, and is consistent with ΛCDM. The two QUIET sea-
sons are also consistent with each other. The first three peaks of the EE
power spectrum are clearly visible.



5.3. RESULTS 107

 0.01

  0.1

    1

   10

  100

 1000

l(l
+

1)
/2

pi
 C

(l)
 (

uK
^2

)

QUIET W-band co-added
QUIET Q-band co-added

-0.01

-0.1

-1

-10

-100

-1000
0 100 200 300 400 500 600 700 800 900 1000

l(l
+

1)
/2

pi
 C

(l)
 (

uK
^2

)

l

Figure 5.5: The QUIET EB power spectrum ( l(l+1)
2π CEB

l ) based on data from
all four CMB patches. The W-band results are indicated using “+”-symbols
with 1 sigma (green) and 2 sigma (red) statistical error bars, while the Q-
band results use “x”-symbols with 1 sigma (purple) and 2 sigma (blue)
error bars. Due to the large magnitude difference between high and low
multipoles, the graph is logarithmic – the upper and lower panels corre-
sponding to positive and negative numbers respectively. The W-band gain
is calibrated to WMAP via the EE power spectrum, greatly reducing the
systematic errors, which would otherwise be ∼ 18%. The spectrum is con-
sistent with the expectation of zero EB power except for a 2.7 sigma outlier
in the W-band bin centered on l = 350. The probability of observing one or
more such outliers in one of the (19 + 9) · 3 = 84 bins of the EE, EB and BB
spectra is 44%.
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Figure 5.6: The QUIET BB power spectrum based on data from all four
CMB patches. The W-band results are indicated using “+”-symbols with 1
sigma (green) and 2 sigma (red) statistical error bars, while the Q-band re-
sults use “x”-symbols with 1 sigma (purple) and 2 sigma (blue) error bars.
Due to the large magnitude difference between high and low multipoles,
the graph is logarithmic – the upper and lower panels corresponding to
positive and negative numbers respectively. The W-band gain is calibrated
to WMAP via the EE power spectrum, greatly reducing the systematic er-
rors, which would otherwise be ∼ 17%. The spectrum is consistent with
zero BB power. Though BB cannot physically be negative, we are using
the Gaussian error approximation here, which does allow this. Negative
power should be interpreted as cases where the noise happened to fluctu-
ate high. Though the truncated, positive part of the distribution is a useful
approximation to the likelihood, we do not rely on this when estimating
the tensor-to-scalar ratio, which is estimated from the exact likelihood.
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Figure 5.7: Top: The QUIET EE power spectrum compared with the two
other most precise measurements to date, BICEP and QUAD, and with
the WMAP 7-year best fit ΛCDM spectrum. Bottom: The QUIET BB
power 2 sigma upper limits compared with BICEP and QUAD. In both
cases, QUIET has the most precise measurements in the multipole range
150 ≤ l ≤ 400.
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Figure 5.8: The QUIET W-band (red) and Q-band (green) TT power spec-
trum based on data from all four CMB patches for Q-band, and CMB patch
1, 2 and 4 for W-band, compared to the WMAP 7-year best fit ΛCDM
model. The temperature results are based on a less comprehensive null
test suite than the polarization results, and have not been subject to the
same detailed systematics study. Nevertheless, the agreement with ΛCDM
is excellent. The l = 50 bin in W-band and CMB patch 3 in Q-band failed
the temperature null-tests, and are therefore not included here.
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Figure 5.9: The QUIET Q-band TE power spectrum based on data from all
four CMB patches, compared to the WMAP 7-year best-fit ΛCDM model.
The temperature results are based on a less comprehensive null test suite
than the polarization results, and have not been subject to the same de-
tailed systematics study. The results are consistent with the expectation
from ΛCDM. The spectrum prefers to shift the top near l = 300 towards
higher multipoles, but this is not significant. The W-band temperature
cross-spectra were not yet ready at the time of writing.
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Figure 5.10: The QUIET Q-band TB power spectrum based on data from all
four CMB patches. The temperature results are based on a less comprehen-
sive null test suite than the polarization results, and have not been subject
to the same detailed systematics study. Based on our sensitivity, we expect
TB to be consistent with zero. This is the case all bins but those at l = 150
and l = 350, which are nonzero by 2.4 and 2.2 sigma based on the statis-
tical errors. The probability of observing 2 outliers of > 2.2 sigma among
the 45 bins in the TT, TE and TB spectra is 35.7%, so this does not amount
to a detection. Furthermore, the systematic errors were not included in the
error bars, and would further reduce the significance.
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Figure 5.11: The spectral behavior of the diffuse foregrounds in total power
as a function of frequency. Blue: Synchrotron, green: free-free, pink: spin-
ning dust, red: thermal dust. The horizontal line shows the amplitude of
the CMB anisotropies. The corresponding graph for polarization is still
poorly determined, but due to synchrotron’s high polarization fraction
(3% − 30%), it is expected to be the only relevant diffuse component un-
til thermal dust takes over at ν ∼ 80GHz. This figure is taken from [56].
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[56]. In comparison, the CMB itself is polarized at the 10% level, which is
comparable to that of the foregrounds. The CMB polarization is however
predominantly in the form of E-modes, and the B-mode amplitude may
well be low enough that foregrounds pose a serious problem.

Figure 5.12 shows the expected foreground contamination for QUIET’s
four CMB patches in the W-band based on the Planck Sky Model [57]. Ac-
cording to this model, dust is by far the most important polarized fore-
ground at 95 GHz, with an amplitude approaching the statistical error
level in the l = 50 bin for CMB patch 1, which is the most foreground-
contaminated patch due to its proximity to the Milky Way. In the Q-band,
the situation is reversed. With a spectral index of ∼ −3, the synchrotron
component has ∼ ( 44GHz

95GHz )−6 ∼ 102 times higher power, which is enough
to make it detectable in the lowest multipole bin for CMB patch 1; indeed,
the Q-band l = 50 bin EE-power is measured to be 0.55± 0.14µK2 for this
patch, a 3σ outlier which is consistent with the expected synchrotron con-
tribution.

Aside from the first bin for CMB patch 1, we do not expect foregrounds
to be significant at our sensitivity. However, if the tensor-to-scalar ratio is
of the order r . 0.02 a better understanding of the polarized foregrounds
will be needed in order to disentangle these from the CMB.

5.3.3 Systematic errors

The error bars in figures 5.4-5.6 do not include the systematic errors, but a
summary of these can be seen in figure 5.13. Most of these errors are much
smaller than the statistical error, and have no impact on the results. How-
ever, the absolute gain uncertainty, which is by far the largest systematic
error, is significantly larger than the statistical error in signal-dominated
regions. Luckily, the effect of the absolute gain is simply to scale all the
polarization spectra up or down by a constant factor, making this error
completely correlated between all multipoles. Rather than add large, 100%
correlated systematic error bars to the power spectra, which would make
it hard to visually judge the impact of this systematic, we instead chose to
factorize the power spectra as follows:

Cl =ACnorm
l . (5.26)

Here Cnorm
l is the spectrum with the amplitude normalized to a reference

value, which we choose to be the WMAP 7-year best-fit spectrum, and A
is the relative EE amplitude between ΛCDM and QUIET. Thus, A contains
the amplitude degree of freedom of the spectrum and its relatively large
systematic uncertainty, while Cnorm

l holds all the remaining NbinNspect − 1
degrees of freedom of the shape of the spectrum, which have only negligible
systematics. The spectra in figures 5.4-5.6 are all of the Cnorm

l type, and
hence only contain relative amplitude information.
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Expected synchrotron power in the W-band

Expected dust power in the W-band

Figure 5.12: The expected power spectrum contamination from syn-
chrotron (top) and dust (bottom) in the W-band, compared to QUIET’s sta-
tistical error and the ΛCDM expectation for EE modes, lensing B-modes
and primordial B-modes for r = 0.1 and r = 0.01, based on the Planck
foreground model v. 1.7.4. The graphs in this figure were produced by
Osamu Tajimao as part of his systematics study for the W-band analysis.
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The primary contributions to the absolute gain uncertainty are the un-
certainty in the polarized intensity of Tau A, beam area, and gain variations
between detectors. These are multiplicative errors, so A can be approxi-
mated as having a log-normal distribution, with A ∼ logN (log(1.0), 0.13)
in the Q-band and A ∼ logN (log(1.35), 0.17) in the W-band (prelimi-
nary). The latter is high by 1.8 sigma compared to the expected value of 1,
indicating that this preliminary 17% may be an underestimate.

To avoid propagating this uncertainty into the estimate of the tensor-to-
scalar ratio r, we can instead consider A, as determined from the EE power
spectrum, as a measurement of the absolute gain, and use this instead of
the uncertain Tau A-derived estimate. In this case, the uncertainty of A is
reduced to the statistical uncertainty from the EE power spectrum fit, which
is only 3.7%. This is similar to the approach of calibrating the gain against
the TT power spectrum, which is the standard approach for bolometer-
based CMB polarization experiments.

5.3.4 Parameters

The tensor-to-scalar ratio likelihood derived from the Q-band and the pre-
liminary W-band analysis is shown in figure 5.14. Based on these, we find
r = 0.35+1.06

−0.87 (Q-band) and r = 1.08+0.88
−0.78 (W-band), with 95% upper limits

of 2.2 (Q) and 2.8 (W). Though the W-band data set has a slightly higher
sensitivity than the Q-band set, each central value is noisy due to limited
statistics, and this noise fluctuated towards higher values for the W-band
analysis, resulting in a poorer limit on r.
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Figure 5.13: The Q-band (top) and W-band (bottom, preliminary) system-
atic effects compared to the statistical error and the expected signal. With
the exception of the absolute gain, the systematic errors are all significantly
smaller than the statistical errors. The absolute gain uncertainty is rela-
tively large, but acts as a simple scaling of all spectra by ±18%. The sim-
plest way of ensuring that this does not affect the B-mode limits is to sac-
rifice a single EE degree of freedom by calibrating the EE spectrum against
ΛCDM, since the same gain applies to both E and B. Figure courtesy of
Osamu Tajima.
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Figure 5.14: The Q- and W-band likelihood for the tensor-to-scalar ratio
r. While the W-band measurement is slightly more sensitive than that for
the Q-band, the latter results in a lower limit on r because it happened to
fluctuate lower. Both graphs extend into the area of unphysical negative
tensor-to-scalar ratios. These regions should be excluded by the prior, but
plotting the likelihood directly with these negative regions included makes
it easy to see at a glance that these measurements are consistent with zero.



Chapter 6

Non-gaussianity

The power spectrum and parameter estimation in the previous chapter is
all based on the assumption that the CMB is a Gaussian random field. The-
oretically, the primordial perturbations derive from quantum fluctuations
during inflation, and these are expected to be in the ground state of the
harmonic oscillator, which is a Gaussian [58, 1]. The subsequent evolution
towards the surface of last scattering preserves this to linear order in per-
turbation theory, which is still a good approximation, resulting in a CMB
which should be very close to Gaussian1.

However, this conclusion can change based on the model of inflation
and the importance of second and higher order effects during the subse-
quent evolution of the universe, neither of which are settled issues [60, 61].
Testing the Gaussianity of the CMB provides an indirect way of probing
these issues, and has become an active field of research [62, 63, 59]. As
there are infinitely many ways of being non-Gaussian, a large set of tests
have been suggested. These can be divided into targeted tests, which test
for a specific kind of non-Gaussianity2, and general tests, which can find
any kind of non-Gaussianity, at the cost of being less sensitive. Examples of
the latter are the Kolmogorov-Smirnow test, the Cramér–von Mises statistic
and the Anderson-Darling test3, which all work by comparing the empiri-
cal cumulative distribution function with the theoretically expected one.

In 2010 Gurzadyan et al. [65] published the result of the application
of the Kolmogorov-Smirnov test to look for non-Gaussianity in the CMB.
Their surprising result was that only 20%(!) of the CMB anisotropies be-
have as a random Gaussian field, with the remaining 80% being “non-

1During its travel from the surface of last scattering, small levels of non-Gaussianity
enters the CMB due to various effects such as inhomogeneous recombination and gravita-
tional lensing. The latter has been recently been detected [59].

2These can be tests for a particular kind of non-Gaussianity predicted by a specific the-
ory, or can be more generic such as testing the higher moments of the empirical distribution.

3When applied as a test for normality, the Anderson-Darling test is usually the most
sensitive of these [64], but the Kolmogorov-Smirnov test is still popular.
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Figure 6.1: Illustration of the Kolmogorov statistic K, which is the maximal
difference between the empirical and theoretical cumulative distribution
functions. K is the maximal vertical difference marked in blue.

random”4. This analysis later became the basis of a highly publicised claim
for evidence for the Conformal Cyclic Cosmology hypothesis [66], which
in turn prompted three independent follow-up studies [67, 68, 69]. Neither
of these follow-ups found any significant detection. Subsequent correspon-
dence5 made it clear that the reason for the difference in significance was
due to Gurzadyan and Penrose [66] using simulations with much lower
variance than the standard model due to the claim in Gurzadyan et al. [65]
that the CMB is only “20% random”, a claim that had gone unnoticed by
most of the community, but which would be revolutionary if true.

To test the “20% random” claim, I repeated the analysis of Gurzadyan
et al. [65] in paper IV of this thesis. Here the Kolmogorov-Smirnov (K-S)
test was applied to 104 randomly chosen 1.5◦ radius disks from the WMAP
7-year W-band temperature map after excluding regions of galactic latitude
|b| < 30◦.

According to the Kolmogorov theorem, the maximal difference K be-
tween the theoretical and empirical cumulative distribution functions of
a set of independently identically distributed samples will in the limit of in-

4What they mean by this term is not defined in the article, but based on their simulations
in later articles, they appear to mean that 80% of the CMB would be the same between
different cosmic realizations.

5This rapid exchange, with 8 articles following each other in rapid succession in response
to each other, all in the space of half a year, and the first 5 within one month, is an example
of how preprint-services can drastically reduce the scientific turn-around time compared to
traditional journals.
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finitely many samples be distributed according to [64]:

P(x < K) =FKS(
√

NsampK) (6.1)

FKS(x) =1− 2
∞
∑
i=1

(−1)i−1e−2i2x2
. (6.2)

This relation can then be used to test the hypothesis that a set of samples
were drawn from a given distribution. However, the pixels si within the
1.5◦ CMB disks do not fulfil the criterion of being independently identi-
cally distributed due to the CMB anisotropies’ correlatedness6, which are
described in pixel space by the covariance Si j + Ni j as provided by equa-
tion (5.8) and the noise properties of the experiment. But it is possible to
whiten s and thus make it eligible for the test: The vector s′ ≡ S− 1

2 s will
follow the distribution N(0, 1), and thus be independently identically dis-
tributed if s ∼ N(0, S + N).

After applying the K-S test to the s′ of all 104 disks with N(0, 1) as
the theoretical distribution I found a result fully consistent with the CMB
anisotropies being fully described as a random Gaussian distribution with
an angular power spectrum Cl given by the ΛCDM best fit to the WMAP
7-year data. This result is clearly incompatible with Gurzadyan et al. [65],
where the K-S test consistently failed. I was, however, able to reproduce
their K-S failure by ignoring the correlations, and instead testing s against
N(µ,σ2), where µ andσ are the measured mean and standard deviation of
s respectively. This strongly suggests that Gurzadyan et al. [65]’s claim of a
“weakly random” CMB stems from incorrectly ignoring the covariance of
the CMB.

6Ignoring these correlations amounts to assuming a flat angular power spectrum.
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Chapter 7

Summary and outlook

CMB B-modes provide the most promising avenue for detection of the pri-
mordial tensor fluctuations predicted by inflation. Such a detection would
in addition to validating inflation itself constitute a probe of physics at far
higher energies than those reachable in particle colliders. So far, no exper-
iment has been able to detect B-modes, which implies that the tensor-to-
scalar ratio must be less than 0.7. This limit is still worse than the limit of
r < 0.2 from T and E-modes, but this is likely to change with future B-mode
experiments.

One of the current experiments aiming to measure B-modes is QUIET.
QUIET’s defining feature is its use of large, compact arrays of coherent
amplifier detectors. Until recently, such arrays of microwave polarimeters
were only practical with bolometers. However, a recent breakthrough has
allowed the miniaturization of coherent amplifier detectors to a polarimeter-
on-a-chip format, and QUIET is the first deployment of these in the field.
In addition to the measurement of B-modes itself, one of QUIET’s goals is
therefore to demonstrate the viability of these detectors for high-precision
CMB measurements.

After deploying in 2008, QUIET observed in the Q- and W-bands until
the end of 2010, resulting in measurements of the CMB E- and B-modes in
the multipole range 25 < l < 1000. The W-band measurements provide
world record sensitivity between l = 150 and l = 400. QUIET did not
observe any CMB B-modes, resulting in limits of r < 2.2 (Q) and r < 2.8
(W) at 95% confidence. While these are wider than the best limits avail-
able, QUIET’s results are demonstrated to have very low systematic errors,
corresponding to r < 0.1.

A first step towards this sensitivity will be taken by combining the Q-
and W-band data sets into a single estimate on r, which will be performed
in a future article. This will provide an approximate factor of 2 improve-
ment. To go beyond this, more observations are needed. With the viability
of the detectors validated, plans are underway for a full deployment of this
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technology as QUIET-2.
QUIET 2 would include 500-1000 detector modules, for a total of 2000-

4000 concurrent polarization measurements. The majority of these will
be W-band detectors with significantly improved sensitivity compared to
those used in the current QUIET experiment. This will allow QUIET-2 to
reach statistical errors of r . 0.01 or better, which is enough to rule out all
large-field models of inflation and some small-field models [7].

However, to reach this level, it is clear that it will no longer be possi-
ble to ignore foregrounds. Polarized component separation will be needed,
and that requires sensitive polarization maps at multiple frequencies and
a better understanding of the behavior of polarized foregrounds. QUIET 2
will include detectors sensitive in the Ka-low, Ka-high and W-band, which
in principle is enough to disentangle CMB, synchrotron and dust. Addi-
tionally, Q-band measurements in the same patches will be provided by
the FOCUS experiment, a planned re-deployment of the existing QUIET
Q-band array, which is currently the most sensitive array in this frequency
band.1

Though foregrounds are a nuisance for CMB measurements, they are
interesting from an astrophysical perspective. The current QUIET exper-
iment includes two foreground-dominated patches in the galactic plane.
The maps of these patches, which represent some of the most sensitive mi-
crowave polarization measurements of the galaxy, will be the subject of a
future QUIET foreground paper.

A strength of the maximum likelihood analysis pipeline described in
this thesis is its production of unbiased maps with fully quantified statis-
tical properties. This makes the maps useful in their own right instead of
simply being an intermediate step before power spectrum estimation. The
maximum likelihood pipeline will therefore be central in the QUIET fore-
ground analysis both for the current QUIET and for the future QUIET-2.

1Other upcoming experiments will also improve our knowledge of foregrounds:

• C-Bass is currently making polarization maps of the full sky in the C-band (5 GHz).
These will essentially be 100% synchrotron radiation with very high signal-to-noise
due to synchrotron’s steep spectral index.

• Planck will produce full-sky polarization maps at a large number of frequencies be-
tween 30 GHz and 857 GHz. While these will have low S/N for the CMB polariza-
tions, Planck will have good S/N for dust and synchrotron.
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ABSTRACT
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, oper-

ating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the
polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves.
The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galac-
tic synchrotron radiation. Between 2008 October and 2010 December, over 10,000hours of data were
collected, first with the 19-element 43-GHz array (3458hours) and then with the 90-element 95-GHz
array. Each array observes the same four fields, selected for low foregrounds, together covering ≈ 1000
square degrees. This paper reports initial results from the 43-GHz receiver which has an array sensi-
tivity to CMB fluctuations of 69µK

√
s. The data were extensively studied with a large suite of null

tests before the power spectra, determined with two independent pipelines, were examined. Analysis
choices, including data selection, were modified until the null tests passed. Cross correlating maps
with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and
EB power spectra in the multipole range ℓ = 25–475. With the exception of the lowest multipole bin
for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is
detected with 3-σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming
the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero,
leading to a measurement of the tensor-to-scalar ratio of r = 0.35+1.06

−0.87. The combination of a new
time-stream “double-demodulation” technique, Mizuguchi–Dragone optics, natural sky rotation, and
frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power
so far reported, below the level of r = 0.1.

Subject headings: cosmic background radiation—Cosmology: observations—Gravitational waves—
Inflation—Polarization
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1. INTRODUCTION

The inflationary paradigm resolves several outstand-
ing issues in cosmology, including the flatness, horizon,
and monopole problems, and it provides a compelling
explanation for the origin of structure in the Universe
(e.g. Liddle & Lyth 2000, and references therein). So far
all cosmological data, including measurements of Cos-
mic Microwave Background (CMB) anisotropies, sup-
port this paradigm; still the underlying fundamental
physics responsible for inflation is unknown. Inflation
produces a stochastic background of gravity waves that
induce odd-parity tensor “B modes” at large angular
scales in the CMB polarization. If these primordial B
modes, parametrized by the tensor-to-scalar ratio r, are
detected, one can learn about the energy scale of infla-
tion. In many attractive slow-roll models, this scale is
given approximately by r1/4 × 1016 GeV. For large-field
models, the energy scale is near the Grand Unification
Scale in particle physics, so that r & 0.01. A new gen-
eration of experiments aims for good sensitivity in this
range of r. Establishing the existence of primordial B
modes would both verify an important prediction of in-
flation and provide access to physics at an incredibly high
energy scale.

The most stringent limit to date is r < 0.20 at the 95%
confidence level (Komatsu et al. 2010) set by a combi-
nation of CMB–temperature-anisotropy measurements,
baryon acoustic oscillations, and supernova observations,
but cosmic variance prohibits improvements using only
these measurements.

E-mode polarization has now been detected by many
experiments (e.g., Kovac et al. 2002; Leitch et al. 2005;
Montroy et al. 2006; Sievers et al. 2007; Wu et al. 2007;
Bischoff et al. 2008; Larson et al. 2010). These mea-
surements are consistent with predictions from CMB–
temperature-anisotropy measurements, and they provide
new information on the epoch of reionization. Only BI-
CEP has accurately measured E-mode polarization in
the region of the first acoustic peak (Chiang et al. 2010);
that paper also reports the best limit on r coming from
cosmological B modes: r < 0.72 at the 95% confidence
level.

Experiments measuring B-mode polarization in the
CMB should yield the best information on r, but this
technique is still in its infancy. B modes are expected
to be at least an order of magnitude smaller than the
E modes so control of systematic errors and foregrounds
will be particularly critical. Below ≈ 90GHz, the domi-
nant foreground comes from Galactic synchrotron emis-
sion, while at higher frequencies, emission from thermal
dust dominates. Most planned or operating CMB polar-
ization experiments employ bolometric detectors observ-
ing most comfortably at frequencies & 90GHz, so they
cannot estimate synchrotron contamination from their
own data.

25 Current address: Nikhef, Science Park, Amsterdam, The
Netherlands

26 Current address: Department of Physics, McGill University,
3600 Rue University, Montreal, Quebec H3A 2T8, Canada

27 Current address: Kavli Institute for Cosmological Physics,
Enrico Fermi Institute, The University of Chicago, Chicago, IL
60637, USA

The Q/U Imaging ExperimenT (QUIET) is one of two
CMB polarization experiments to observe at frequencies
suitable for addressing synchrotron contamination, mak-
ing observations at 43GHz (Q band) and 95GHz (W
band) and with sufficient sensitivity to begin to probe
primordial B modes. The other is Planck (Tauber et al.
2010).

QUIET uses compact polarization-sensitive modules
based upon High–Electron-Mobility Transistor (HEMT)
amplifiers, combined with a new time-stream “double-
demodulation” technique, Mizuguchi–Dragone (MD) op-
tics (for the first time in a CMB polarization experi-
ment), natural sky rotation, and frequent rotation about
the optical axis to achieve a very low level of contamina-
tion in the multipole range where a primordial–B-mode
signal is expected.

Between 2008 October and 2010 December, QUIET
collected over 10,000hours of data, split between the Q-
band and W-band receivers. Here we report first results
from the first season of 3458hours of Q-band observa-
tion. After describing the instrument, observations, and
detector calibrations (Sections 2, 3, and 4), we discuss
our analysis techniques and consistency checks (5 and
6). CMB power spectra are then presented together with
a foreground detection (7). We evaluate our systematic
errors (8) and then conclude (9).

2. THE INSTRUMENT

The QUIET instrument comprises an array of correla-
tion polarimeters cooled to 20K and coupled to a dual-
reflector telescope, installed on a three-axis mount in-
side a comoving ground screen. The instrument is illus-
trated in Figure 1. Further details are given below and in
Newburgh et al. (2010), Kusaka et al. (2010), and Buder
(2010).

Fig. 1.— Overview of the QUIET instrument. The cryostat and
1.4-m telescope mirrors are enclosed in a rectangular comoving ab-
sorbing ground screen; in this figure its walls are transparent. The
telescope, cryostat and electronics are mounted on a single plat-
form attached to the deck bearing, which allows rotations around
the instrument’s optical axis.

The Q-band QUIET receiver is a 19-element array con-
taining 17 low-noise correlation polarimeters, each simul-
taneously measuring the Stokes Q, U, and I parameters,
and two CMB differential-temperature monitors.

The first element in the QUIET optical chain is a 1.4-
m crossed Mizuguchi–Dragone dual-reflective telescope
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(Mizugutch et al. 1976; Dragone 1978). The crossed MD
configuration is very compact, with low cross polariza-
tion and a large diffraction-limited field of view. The
telescope is described in detail in Imbriale et al. (2010).
Light incident on the mirrors is focused into an array
of corrugated circular feed horns (Gundersen & Wol-
lack 2009), yielding a full-width half-maximum (FWHM)
beam size of 27.′3 and a roughly circular field of view of
7◦ diameter. Radiation from each feed horn enters a
septum polarizer (Bornemann & Labay 1995) which sep-
arates left and right circularly-polarized components (L
and R) into two waveguide ports which mate to a QUIET
correlation module, detailed below.

The module array and feed horns are cooled to 20K in
a cryostat to reduce instrumental noise. An electronics
enclosure mounted next to the cryostat houses the elec-
tronics necessary for biasing the modules and recording
their data. The cryostat, electronics, and telescope are
installed on the former CBI mount (Padin et al. 2002).
This mount provides three-axis motion: azimuth, eleva-
tion, and rotation about the optical axis. This last is
called “deck” rotation.

The cryostat and telescope are enclosed by an absorb-
ing comoving ground screen. The ground screen was
designed to have two parts, but the upper section (not
shown in Fig. 1) was not installed until after the Q-band
instrument was removed. Its absence was correctly antic-
ipated to result in two far sidelobes, which were mapped
with a high-power source by the QUIET W-band instru-
ment in the field and measured to be . −60dB with
the QUIET Q-band instrument when the Sun passed
through them. The effects of these sidelobes are miti-
gated through filtering and data selection (Sections 5.1.3
and 5.2). Section 8.4 shows that any residual contami-
nation is small.

Each QUIET Q-band correlation module, in a foot-
print of only 5.1 × 5.1 cm2, receives the circular po-
larization modes of the celestial radiation and outputs
Stokes Q, U and I as follows. Each input is indepen-
dently amplified and passed through a phase switch.
One phase switch alternates the sign of the signal volt-
age at 4 kHz, while the other switches at 50Hz. The
two signals are combined in a 180◦ hybrid coupler, with
outputs proportional to the sum and difference of the
inputs. Since the module inputs are proportional to
(L, R) = (Ex±iEy)/

√
2, where Ex and Ey are orthogonal

components of the incident electric field, the coupler out-
puts are amplified versions of Ex and iEy, with the phase
switch reversing their roles. Half of each output is band-
pass filtered and rectified by a pair of detector diodes,
while the other half passes into a 90◦ hybrid coupler. A
second pair of bandpass filters and detector diodes mea-
sures the power from this coupler’s outputs (Kangaslahti
et al. 2006).

Synchronous demodulation of the 4-kHz phase switch-
ing yields measurements of Stokes +Q and −Q on the
first two diodes and Stokes +U and −U on the remain-
ing two. This high-frequency differencing suppresses low-
frequency atmospheric fluctuations as well as 1/f noise
from the amplifiers, detector diodes, bias electronics, and
data-acquisition electronics. Subsequent demodulation
of the 50-Hz phase switching removes spurious instru-
mental polarization generated by unequal transmission

coefficients in the phase-switch circuits. The resulting
four “double-demodulated” time streams are the polar-
ization channels.

Averaging the output of each diode rather than demod-
ulating it results in a measurement of Stokes I, hereafter
called total power, denoted “TP.” The TP time streams
are useful for monitoring the weather and the stability
of the detector responsivities, but suffer too much con-
tamination from 1/f noise to constrain the CMB tem-
perature anisotropy. Therefore, the Q-band instrument
includes two correlation modules that are coupled to a
pair of neighboring feed horns to measure the temper-
ature difference between them, in a scheme similar to
the WMAP differencing assemblies (Jarosik et al. 2003).
These differential-temperature modules provide calibra-
tion data for the telescope pointing, beams, and side-
lobes, as well as CMB data. Their feed horns are in the
outer ring of the close-packed hexagonal array, ≈ 3◦ from
the center.

Here we summarize several array-wide characteristics
of the polarimeters. Bandpass measurements in the lab
and at the start of the observing season find that the
average center frequency is 43.1± 0.4GHz, and the aver-
age bandwidth is 7.6 ± 0.5GHz. We calculate the noise
power spectra of the double-demodulated polarimeter
time streams from each 40–90-minute observation to as-
sess their 1/f knee frequencies and white-noise levels (see
Section 5.1). The median 1/f knee frequency is 5.5mHz,
well below the telescope scan frequencies of 45–100mHz.

From the white-noise levels and responsivities (Sec-
tion 4.1) we find an array sensitivity28 to CMB fluctua-
tions of 69µK

√
s, such that the mean polarized sensitiv-

ity per module is 280µK
√

s.
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Fig. 2.— The CMB and Galactic patches, in equatorial coordi-
nates, superimposed on a Q-band all-sky WMAP 7-year tempera-
ture map (Jarosik et al. 2010). Note that the Galactic-plane tem-
perature signal saturates the color scale. Patch G-2 is the Galactic
center.

3. OBSERVATIONS

QUIET is located on the Chajnantor plateau in
the Atacama Desert of northern Chile (67◦45′42′′ W,
23◦01′42′′ S). A combination of high altitude (5080m)
and extreme dryness results in excellent observing con-
ditions for most of the year. During the eight months
of QUIET Q-band observations, the median precipitable

28 This is the sensitivity for 62 polarization channels. Six of 68
polarization channels are non-functional—an array yield of 92%.
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water vapor (PWV) measured at the nearby APEX site
(Güsten et al. 2006) was 1.2mm.

We began observations with the Q-band receiver on
2008 October 24, and took 3458hours of data until
2009 June 13 (when the receiver was replaced on the
telescope by the 90-element W-band receiver). Of these
data, 77% are for CMB, with 12% of the observing time
used for Galactic fields, 7% for calibration sources, and
4% cut due to obvious instrumental problems such as lack
of telescope motion. We observe 24 hours a day, except
when interrupted. Our full-season operating efficiency is
63%; causes of downtime include occasional snow, power
outages, and mechanical failures.

TABLE 1
Patch Locations and Integration Times

Patch RA Dec. Integration
(J2000) Hours

CMB-1 12h04m −39◦00′ 905
CMB-2 05h12m −39◦00′ 703
CMB-3 00h48m −48◦00′ 837
CMB-4 22h44m −36◦00′ 223

G-1 16h00m −53◦00′ 311
G-2 17h46m −28◦56′ 92

Note. — The central equatorial coordinates and integration
times for each observing patch. G-1 and G-2 are Galactic patches.

3.1. Field Selection
We observe four CMB fields, referred to henceforth as

“patches.” Table 1 lists their center positions and to-
tal integration times, while Figure 2 indicates their po-
sitions on the sky. The number of patches is determined
by the requirement to always have one patch above the
lower elevation limit of the mount (43◦). The specific
positions of each patch were chosen to minimize fore-
ground emission using WMAP 3-year data. The area of
each patch is ≈ 250 deg2. In addition to the four CMB
patches, we observe two Galactic patches. These allow
us to constrain the spectral properties of the polarized
low-frequency foregrounds with a high signal-to-noise ra-
tio. The results from the Galactic observations will be
presented in a future publication.

3.2. Observing Strategy
Scanning the telescope modulates the signal from the

sky, converting CMB angular scales into frequencies in
the polarimeter time streams. Since QUIET targets large
angular scales, fast scanning (≈ 5◦ s−1 in azimuth) is crit-
ical to ensuring that the polarization modes of interest
appear at higher frequencies than the atmospheric and
instrumental 1/f knee frequencies.

So that each module sees a roughly-constant atmo-
spheric signal, each QUIET scan is a constant-elevation
scan (CES): periodic motion solely in azimuth with both
the elevation and deck-rotation axes fixed. Each CES
has an amplitude of 7.5◦ on the sky, with period 10–22 s.
Typical CESes last 40–90minutes. We repoint the tele-
scope when the patch center has moved by 15◦ in order
to build up data over an area of ≈ 15◦ × 15◦ for each
patch. Note that a central region ≃ 8◦ across is observed
by all polarimeters since the instrument’s field of view
has a diameter of ≃ 7◦. Diurnal sky rotation and weekly

deck rotations provide uniform parallactic-angle cover-
age of the patch, and ensure that its peripheral regions
are also observed by multiple polarimeters.

TABLE 2
Regular Calibration Observations

Source Schedule Duration (min.)

sky dips every 1.5 hours 3
Tau A every 1–2 days 20
Moon weekly 60
Jupiter weekly 20
Venus weekly 20
RCW38 weekly 20

4. CALIBRATION

Four quantities are required to convert polarimeter
time streams into polarization power spectra: detector
responsivities, a pointing model, detector polarization
angles, and beam profiles. To this end, a suite of cali-
bration observations is performed throughout the season
using astronomical sources (Taurus A–hereafter Tau A,
Jupiter, Venus, RCW38, and the Moon); atmospheric
measurements (“sky dips,” which typically consist of
three elevation nods of ±3◦); and instrumental sources
(a rotating sparse wire grid and a polarized broadband
noise source). From these we also measure instrumen-
tal polarization, as described below. QUIET’s regular
calibration observations are summarized in Table 2.

We typically use two or more methods to determine a
calibration constant, taking the spread among the meth-
ods as an indication of the uncertainty. We show in Sec-
tion 8 that aside from the case of absolute responsivity,
all calibration uncertainties lead to estimates of system-
atic effects on the power spectra well below statistical er-
rors. This immunity comes from having a large number
of detectors and highly-crosslinked polarization maps.
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Fig. 3.— Polarimeter responses from the central feed horn to the
polarization of Tau A at four parallactic angles. These data were
collected with one correlation module in about 20 minutes. The
errors are smaller than the points. From top to bottom, responses
are shown for the detector diodes sensitive to the Stokes parameters
+Q, −Q, +U, and −U, respectively. For each, the fitted model is
plotted as a dashed line.
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4.1. Responsivity
The polarized flux from Tau A provides a 5mK signal

which we observe at four parallactic angles. The sinu-
soidal modulation of the signal induced by the changing
parallactic angles is fitted to yield responsivity coeffi-
cients for each detector. Figure 3 shows the response of
the four polarization channels from the central feed horn
to Tau A. A typical responsivity is 2.3mV K−1, with a
precision from a single set of observations of 6%. The
absolute responsivity from Tau A was measured most
frequently for the central feed horn. We choose its +Q
diode detector to provide the fiducial absolute responsiv-
ity.

The responsivities of other detectors relative to the
fiducial detector are determined with the sky dips as
described below. We have three independent means of
assessing the relative responsivities among polarimeters:
from nearly-simultaneous measurements of the Moon,
from simultaneous measurements of responses to the ro-
tating sparse wire grid in post-season tests, and from
Tau A measurements. The errors from these methods
are 4%, 2%, and 6% respectively, while the error from
the sky-dip method is 4%. All the methods agree within
errors.

Sky dips generate temperature signals of several
100mK and thus permit measurement of the TP respon-
sivities. The signals vary slightly with PWV. We esti-
mate the slope from the data as 4% mm−1 and correct for
it. This slope is consistent with the atmospheric model of
Pardo et al. (2001). Because the ratios of the responsiv-
ities for the TP and polarized signals from each detector
diode are stable quantities within a few percent of unity,
we use sky dips performed at the beginning of each CES
to correct short-term variations in the polarimeter re-
sponsivities. The responsivities vary by . 10% over the
course of a day, due to changing thermal conditions for
the bias electronics. Further post-season tests provide
a physical model: the relevant temperatures are var-
ied intentionally while the responsivities are measured
with sky dips. We confirm the results with the polarized
broadband source.

We bound the uncertainty in the absolute responsivity
of the polarimeter array at 6%. The largest contribu-
tions to this estimate are uncertainties in (1) the beam
solid angle (4%, see below), (2) the response difference
between polarized and TP signals for each diode detec-
tor (3%), and (3) the Tau A flux (3%, Weiland et al.
2010). The first enters in converting the flux of Tau A
into µK, while the second enters because although one
fiducial diode detector is calibrated directly from Tau A,
for the rest we find relative responsivities from sky dips
and normalize by the fiducial diode’s responsivity.

For the differential-temperature modules, all detectors
observe the signal from Jupiter simultaneously, providing
the absolute responsivity for all channels upon compar-
ison with the Jupiter flux from Weiland et al. (2010).
Observations of Venus (Hafez et al. 2008) and RCW38
agree with the Jupiter measurements within errors, and
sky dips track short-term variations. We calibrate the
absolute responsivity with 5% accuracy.
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Fig. 4.— Map of the polarization of the Moon from one detector
diode. The amplitude of the quadrupole polarization visible here
is ≈ 400 mK. Similar maps are produced for all 17 polarization
modules in the array with a single ≈ hour-long observation. The
dotted line indicates the polarization orientation of the detector.
Contours are spaced at intervals of 100mK, with negative contours
indicated by dashed lines.

4.2. Pointing
The global pointing solution derives from a physical

model of the 3-axis mount and telescope tied to obser-
vations of the Moon with the central feed horn in the
array, as well as Jupiter and Venus with the differential-
temperature feed horns. Optical observations are taken
regularly with a co-aligned star camera and used to mon-
itor the time evolution of the pointing model.

During the first two months in the season, a mechanical
problem with the deck-angle encoder results in pointing
shifts. The problem was subsequently repaired. Based
on pointing observations of the Moon and other astro-
nomical sources, we verify that these encoder shifts are
less than 2◦. Systematic uncertainties induced by this
problem are discussed in Section 8.1.

After the deck-angle problem is fixed, no significant
evolution of the pointing model is found. The differ-
ence in the mean pointing solution between the start and
the end of the season is smaller than 1′. Observations of
the Moon and Jupiter also provide the relative pointing
among the feed horns. The root mean square (RMS)
pointing error in the maps is 3.′5.

4.3. Detector Polarization Angles
Our primary measurement of the polarization angle

for each detector comes from observing the radial po-
larization of the Moon, as illustrated in Figure 4. The
polarization angles are stable, changing by < 0.◦2, except
during the period with the deck-angle–encoder problem
mentioned above.

Two other less precise methods also give estimates of
the detector angles: fits to the Tau A data, and determi-
nation of the phases of the sinusoidal responses of all the
detectors to rotation of the sparse wire grid. In each case,
the differences between the detector angles determined
by the secondary method and the Moon are described by
a standard deviation of ≈ 3◦. However, we find a mean
shift between the Tau A-derived and Moon-derived an-
gles of 1.◦7. To estimate the errors in the angles in light
of this shift, we use an empirical approach: in Section 8.2
we estimate the impact on the power spectra from using
the Tau A results instead of the Moon results, and find
it to be small.
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Fig. 5.— Top panel: Polarization beam profile from Tau A
observations with the central feed horn. The data are overplotted
with the expansion in Gauss-Hermite polynomials described in the
text. Bottom panel: Beam window function with errors shown by
the gray band.

4.4. Beam Profile and Window Function
The polarization and differential-temperature beams

are obtained from maps created using the full data sets of
Tau A and Jupiter observations respectively, with square
pixels of 1.′8 on a side. For polarization, this process
produces the main and leakage beam maps simultane-
ously, with the latter describing the instrumental po-
larization. The average FWHM for the beams across
the array is 27.′3, measured with 0.′1 precision for the
central feed horn and for the differential-temperature
feed horns at the edge of the focal plane. The non-
central–polarization-horn FWHMs are measured less fre-
quently and thus are less precisely known, with an un-
certainty of 1.′5. The beam elongation is typically small
(1%), and its effect is further reduced by the diurnal
sky rotation and weekly deck rotations which result in
a symmetrized effective beam in the CMB maps. We
compute 1-dimensional symmetrized beam profiles, with
a resolution of 0.′6. These profiles are modeled as a
sum of six even Gauss-Hermite terms (Monsalve 2010).
The main-beam solid angles are computed by integrat-
ing these models out to 54′ (roughly −28 dB), yielding
78.0± 0.4 µsr for the differential-temperature horns and
74.3 ± 0.7 µsr for the central horn. An average gives
76 µsr for all horns in the array. We also examine alter-
native estimates such as integrating the raw beam map
instead of the analytical fit. We assign a systematic un-
certainty of 4% based on the differences among these
different estimates. The systematic error includes possi-
ble contributions from sidelobes, which we constrain to
0.7 ± 0.4 µsr with antenna range measurements carried
out before the observation season.

The window functions, encoding the effect of the finite
resolution of the instrument on the power spectra, are
computed from the central-horn and the temperature-
horn–profile models. The central-horn beam profile and
window function are shown in Figure 5. The uncer-
tainty accounts for statistical error and differences be-
tween polarization and differential-temperature beams,

as described in Section 8.1.

4.5. Instrumental Polarization
Instrumental imperfections can lead to a spurious po-

larization signal proportional to the unpolarized CMB
temperature anisotropy. We call this the I to Q (or U)
leakage term. In our instrument, a fraction of the power
input on one port of the correlation module is reflected
because of a bandpass mismatch to the septum polar-
izer, and a fraction of the reflected power re-enters the
other port. The dominant monopole term comes from
this effect. We measure the monopole term from the po-
larimeter responses to temperature changes, using sky
dips; Moon, Tau A, and Galactic signals; as well as vari-
ations from the weather. The average magnitude is 1.0%
(0.2%) for the Q (U) diodes. Note that the discrepancy in
the Q and U averages was predicted from measurements
of the properties of the septum polarizers and confirmed
in the field.

5. DATA ANALYSIS PROCEDURE

QUIET employs two independent analysis pipelines to
derive CMB power spectra. We present the methods used
for analysis in each pipeline, including data selection,
filtering, map making, and power-spectra estimation.

Pipeline A is based on the pseudo-Cℓ analysis frame-
work, first described by Hivon et al. (2002), which is used
by numerous experiments (Netterfield et al. 2002; Brown
et al. 2009; Chiang et al. 2010; Larson et al. 2010; Lueker
et al. 2010). This pipeline made all analysis choices in
accordance with a strict (blind) analysis validation policy
described in Section 6. An advantage of the pseudo-Cℓ

framework is computational efficiency, which is critical
for completing the more than 30 iterations of the null-
test suite. For the same reason, this pipeline is used
for the systematic-error evaluations found in Section 8.
Pseudo-Cℓ analysis also enables us to perform cross cor-
relation, making the resultant power spectra immune to
possible misestimation of noise bias.

Pipeline B implements a maximum-likelihood frame-
work (e.g., Tegmark 1997; Bond et al. 1998), which has a
long history of use by CMB experiments (e.g., Mauskopf
et al. 2000; Page et al. 2007; Wu et al. 2007; Bischoff
et al. 2008). This framework yields minimum-variance
estimates of the power spectra, naturally accounts for
E/B mixing, and directly provides the exact CMB like-
lihood required for estimation of cosmological parame-
ters, without the use of analytical approximations. In
addition to power spectra, it produces unbiased maps
with full noise-covariance matrices, useful for compar-
isons with other experiments. On the other hand, this
approach is also computationally more expensive than
the pseudo-Cℓ framework, and a reduced set of null tests
is therefore used to evaluate data consistency.

The processing of the time-ordered data (TOD) and
the methodology used for data selection are treated in
Sections 5.1 and 5.2, respectively. Brief descriptions of
the pseudo-Cℓ and maximum-likelihood techniques are
found in Section 5.3. TOD processing, data selection,
and analysis for temperature-sensitive modules are dis-
cussed in Section 5.4.
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5.1. Time-Ordered–Data Processing
To prepare the TOD for map making, we execute three

steps: pre-processing, noise modeling, and filtering. Of
these steps, only the filtering is significantly different be-
tween the two pipelines.

5.1.1. Pre-processing
The first data-processing step is to correct for a small

non-linearity that was discovered in the analog-to-digital
converter (ADC) system. The non-linearities occur ev-
ery 1024 bits; roughly 14% of the data are affected. Sys-
tematic uncertainty from this effect is estimated in Sec-
tion 8.5. Next, the receiver data are synchronized with
the telescope pointing. The double-demodulation step,
described in Section 2, is applied, reducing the sample
rate from 100Hz to 50Hz. A model of the detectors’ po-
larized responsivities converts the data from ADC counts
into thermodynamic temperature. The two pipelines use
different responsivity models. Pipeline A applies a con-
stant responsivity throughout each CES, addressing pos-
sible variability within a CES as part of the systematic
error (Section 8); pipeline B updates responsivities on
2-minute timescales (Dumoulin 2010).

5.1.2. Noise Model
After pre-processing, the time streams for each detec-

tor diode in each CES are Fourier-transformed and their
noise power spectra are fit to a model29 with three pa-
rameters: the amplitude of white noise, the 1/f knee
frequency, and the power-law slope of the 1/f noise. We
also compute the white-noise correlations among detec-
tor diodes in the same module: the most important are
between the two Q or the two U detector diodes (with
an average coefficient of 0.22). A small fraction of the
noise spectra contain features not accounted for in the
noise model: beam sidelobes (see Section 2) scanning
across features on the ground create a narrow spike at the
scan frequency; slowly-changing weather patterns during
a CES create a broader peak also at the scan frequency;
and there are some narrow spikes at high (& 6 Hz) fre-
quencies. To prevent these features from biasing the
noise model, the fit excludes a region around the scan
frequency as well as frequencies above 4.6Hz. In ad-
dition to the noise-model parameters, several statistics
quantifying the agreement between the data and noise
model are also used for data selection as described in
Section 5.2.

5.1.3. Filtering
In pipeline A, three filters are applied. These were cho-

sen from the results of many runs of the null-test suite
(see Section 6). First, to remove the high-frequency nar-
row spikes, we apply a low-pass filter that cuts signals
off sharply above 4.6Hz30. Second, to suppress contam-
ination from atmospheric fluctuations and detector 1/f
noise, we subtract a linear function from each telescope
half scan (left-going or right-going) removing modes be-
low twice the scan frequency31. The third filter, designed

29 At the level of a single CES, the TOD of each detector diode
are dominated by noise; the contribution of the CMB is negligible.

30 For QUIET’s beam size and scanning speed a low-pass filter
of 4.5–4.6 Hz results in a minimal loss of sensitivity to the CMB.

31 Typical scan frequencies range from 45 mHz to 100 mHz.

to eliminate signal from ground emission, removes any
azimuthal structure that remains after summing over all
half scans in the CES.

In pipeline B, an apodized bandpass filter is used that
accepts modes from 2.5 times the scan frequency to
4.5Hz; the highpass component of this filter is designed
to suppress scan-synchronous contamination. Further, a
time-independent ground-emission model is subtracted.
The model of ground emission is generated by building
low-resolution and high–signal-to-noise maps in horizon
coordinates from the full-season data for each deck angle
and module, using large (55′) pixels. Only features that
are stable in time, azimuth, elevation, and deck angle
contribute to this model. The amplitude of the ground
correction is . 1 µK.

5.2. Data Selection
The fundamental unit of data used for analysis is the

double-demodulated output of one detector diode for a
single CES, referred to as a “CES-diode.” Selecting only
those CES-diodes that correspond to good detector per-
formance and observing conditions is a critical aspect of
the data analysis. The data-selection criteria began with
a nominal set of cuts and evolved into several distinct
configurations, as many as 33 in the case of pipeline A.
For each configuration, analysis validation (see Section 6)
was performed yielding statistics quantifying the lack of
contamination in the data set. The final data set was
chosen when these statistics showed negligible contami-
nation and were little affected by changes to the cuts.

Cut efficiencies, defined as the fractions of CES-diodes
accepted for the analysis, are given for both pipelines in
Table 3. While each pipeline applies its own cuts uni-
formly to all four patches, the efficiencies among patches
are non-uniform because of differences in weather qual-
ity. Over the course of the eight month observing sea-
son, patch CMB-1 is primarily visible at night, when the
atmosphere tends to be more stable; patch CMB-3 is
mostly observed during the day.

The first step of the data selection is simply to remove
known bad data: data from six non-functional detector
diodes, data during periods of mount malfunctions, and
CESes lasting less than 1000 s. Further, we cut individual
CES-diodes that show deviation from the expected linear
relationship between the demodulated and TP signals.
This cut removes data with poor thermal regulation of
the electronics or cryostat, or residual ADC non-linearity.

The beam sidelobes, described in Section 2, introduce
contamination to the data if the telescope scanning mo-
tion causes them to pass over the ground or the Sun.
Ground pickup is dealt with by filtering as described in
Section 5.1.3. The less frequent cases of Sun contamina-
tion are handled by cutting those CES-diodes for which
the Sun’s position overlaps with the measured sidelobe
regions for each diode.

Additional cuts are specific to each pipeline. Pipeline
A removes data taken during bad weather using a statis-
tic calculated from fluctuations of the TP data during
10-s periods, averaged across the array. This cut removes
entire CESes. Several more cuts remove individual CES-
diodes. While these additional cuts are derived from the
noise modeling statistics, they also target residual bad
weather. During such marginal weather conditions only
some channels need to be cut, since the sensitivity for
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a given detector diode to atmospheric fluctuations de-
pends on its level of instrumental polarization. Next, we
reject CES-diodes with poor agreement between the fil-
tered data and the noise model in three frequency ranges:
a narrow range (only 40 Fourier modes) about the scan
frequency, from twice the scan frequency to 1Hz, and
from 1 Hz to 4.6Hz. We also cut CES-diodes that have
higher than usual 1/f knee frequencies, or large vari-
ations during the CES in the azimuthal slopes of the
double-demodulated time streams; both these cuts help
eliminate bad weather periods. Finally, we also remove
any CES-diodes with an outlier greater than 6 σ in the
time domain on three timescales (20ms, 100ms, and 1 s).

For pipeline B, the weather cut rejects CESes based
on a statistic computed from fluctuations of the double-
demodulated signals from the polarization modules on
10-s and 30-s timescales. Three cuts are applied to re-
move individual CES-diodes. The first is a cut on the 1/f
knee frequency, similar to that of pipeline A. Second, a
cut is made on the noise model χ2 in the frequency range
passed by the filter, and third, we reject CES-diodes hav-
ing a large χ2 in the azimuth-binned TOD. This cut re-
jects data with possible time variation in the ground sig-
nal. Finally, an entire CES is removed if more than 40%
of its detectors have already been rejected.

5.3. Map Making and Power-Spectra Estimation
After filtering, the TOD for all diodes are combined to

produce Q and U maps for each of the QUIET patches.
The maps use a HEALPix Nside = 256 pixelization
(Gorski et al. 2005). This section describes the map mak-
ing and power-spectra estimation from the maps for each
of the pipelines.

5.3.1. Pipeline-A Map Making

Polarization maps (Q and U) are made by summing
samples into each pixel weighted by their inverse vari-
ance, calculated from the white-noise amplitudes. The
full covariance matrix is not calculated. Two polarized
sources, Centaurus A and Pictor A, are visible in the
maps and are removed using circular top-hat masks with
radii of 2◦ and 1◦, respectively.

Separate maps are made for each range of telescope
azimuth and deck-angle orientations. The coordinates
are binned such that there are 10 divisions in azimuth32

and six distinct ranges of deck-angle orientation. Making
separate maps for different telescope pointings enables
the cross correlation described in the next section.

TABLE 3
Total Hours Observed and Data-Selection Efficiencies

Patch Total Hours A % B % Common %

CMB-1 905 81.7 84.3 76.7
CMB-2 703 67.3 70.0 61.2
CMB-3 837 56.0 61.4 51.4
CMB-4 223 70.6 74.2 65.9

All Patches 2668 69.4 72.9 64.2

Note. — Selection efficiencies for each pipeline. “Common”
gives the efficiencies if both sets of cuts were applied.

32 The azimuth divisions are the same for all patches, which
means that not all divisions are populated for patches CMB-3 and
CMB-4.

5.3.2. Power-Spectra Estimation in Pipeline A

The MASTER (Monte Carlo Apodized Spherical
Transform Estimator) method is used in pipeline A
(Hivon et al. 2002; Hansen & Gorski 2003); it is based
on a pseudo-Cℓ technique and takes account of effects
induced by the data processing using Monte Carlo (MC)
simulations. The pseudo-Cℓ method allows estimation
of the underlying Cℓ using spherical-harmonics transfor-
mations when the observations do not cover the full sky
uniformly (Wandelt et al. 2001). The pseudo-Cℓ spec-
trum, designated by C̃ℓ, is related to the true spectrum
Cℓ by:

〈C̃ℓ〉 =
∑
ℓ′

Mℓℓ′Fℓ′B
2
ℓ′〈Cℓ′〉. (1)

There is no term corresponding to noise bias, which
would arise if we did not employ a cross-correlation tech-
nique. Here Bℓ is the beam window function, described
in Section 4.4, and Mℓℓ′ is a mode-mode–coupling kernel
describing the effect of observing only a small fraction
of the sky with non-uniform coverage. It is calculable
from the pixel weights, which are chosen to maximize
the signal-to-noise ratio (Feldman et al. 1994). We bin
in ℓ and recover Cℓ in nine band powers, Cb, and Fℓ is the
transfer function (displayed in Section 7) due to filtering
of the data; its binned estimate, Fb, is found by process-
ing noiseless CMB simulations through pipeline A and
used to obtain Cb. For the polarization power spectra,
equation (1) is generalized for the case where C̃ℓ contains
both C̃EE

ℓ and C̃BB
ℓ .

In the power-spectra estimates, we include only the
cross correlations among pointing-division maps, exclud-
ing the auto correlations. Because the noise is uncorre-
lated for different pointing divisions, the cross-correlation
technique allows us to eliminate the noise-bias term and
thus the possible residual bias due to its misestimate.
Cross correlation between different pointing divisions
also suppresses possible effects of ground contamination
and/or time-varying effects. Dropping the auto correla-
tions creates only a small increase in the statistical errors
(≈ 3%) on the power spectra.

The errors estimated for the pipeline-A power spec-
tra are frequentist two-sided 68% confidence intervals. A
likelihood function used to compute the confidence in-
tervals is modeled following Hamimeche & Lewis (2008)
and calibrated using the MC simulation ensemble of more
than 2000 realizations with and without CMB signal. We
also use the likelihood function to put constraints on r
and calculate the consistency to ΛCDM.

The partial sky coverage of QUIET generates a small
amount of E/B mixing (Challinor & Chon 2005), which
contributes an additional variance to the BB power spec-
trum. We incorporate it as part of the statistical error.
This mixing can be corrected (Smith & Zaldarriaga 2007)
in future experiments where the effect is not negligible
compared to instrumental noise.

5.3.3. Pipeline-B Map Making

In pipeline B, the pixel-space sky map m̂ (Nside = 256)
is given by

m̂ =
(
PT N−1FP

)−1
PT N−1Fd, (2)
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where P is the pointing matrix, N is the TOD–noise-
covariance matrix, F corresponds to the apodized band-
pass filter discussed in Section 5.1.3, and d denotes the
TOD. This map is unbiased, and for the case F = 1 it is
additionally the maximum-likelihood map, maximizing

L(m|d) = e−
1
2 (d−Pm)T N−1(d−Pm). (3)

The corresponding map–noise-covariance matrix (e.g.,
Tegmark 1997; Keskitalo et al. 2010) is

Nm̂ =
(
PT N−1FP

)−1 (
PT FT N−1FP

) (
PT N−1FP

)−1
.

(4)
Note that one often encounters the simplified expression
Nm̂ =

(
PT N−1FP

)−1 in the literature. This corre-
sponds effectively to assuming that F = F2 in the Fourier
domain, and is strictly valid for top-hat–filter functions
only. For our filters, we find that the simplified expres-
sion biases the map-domain χ2(≡ n̂T N−1

m̂ n̂, where n̂ is
a noise-only map) by ≈ 3 σ, and we therefore use the full
expression, which does lead to an unbiased χ2.

Equations (2–4) apply to both polarization and tem-
perature analysis. The only significant difference lies in
the definition of the pointing matrix, P. For polariza-
tion, P encodes the detector orientation, while for tem-
perature it contains two entries per time sample, +1 and
−1, corresponding to the two horns in the differential-
temperature assembly.

After map making, the maps are post-processed by re-
moving unwanted pixels (i.e., compact sources and low–
signal-to-noise edge pixels). All 54 compact sources in
the 7-year WMAP point source catalog (Gold et al. 2010)
present in our four patches are masked out, for a total
of 4% of the observed area. We also marginalize over
large-scale and unobserved modes by projecting out all
modes with ℓ ≤ 5 (ℓ ≤ 25 for temperature) from the
noise-covariance matrix using the Woodbury formula, as-
signing infinite variance to these modes.

5.3.4. Power-Spectra Estimation in Pipeline B
Given the unbiased map estimate, m̂, and its noise-

covariance matrix, Nm̂, we estimate the binned CMB
power spectra, Cb, using the Newton–Raphson optimiza-
tion algorithm described by Bond et al. (1998), general-
ized to include polarization. In this algorithm one iter-
ates towards the maximum-likelihood spectra by means
of a local quadratic approximation to the full likelihood.
The iteration scheme in its simplest form is

δCb =
1
2

∑
b′
F−1

bb′ Tr
[
(m̂m̂T −C)(C−1C,b′C−1)

]
, (5)

where b denotes a multipole bin, C is the signal-plus-
noise pixel-space covariance matrix, and C,b is the
derivative of C with respect to Cb. The signal compo-
nent of C is computed from the binned power spectra,
Cb, and the noise component is based on the noise model
described in Section 5.1.2, including diode-diode correla-
tions. Finally,

Fbb′ =
1
2
Tr(C−1C,bC−1C,b′) (6)

is the Fisher matrix. Additionally, we introduce a step
length multiplier, α, such that the actual step taken at

iteration i is α δCb, where 0 < α ≤ 1 guarantees that C is
positive definite. We adopt the diagonal elements of the
Fisher matrix as the uncertainties on the band powers.

We start the Newton–Raphson search at Cℓ = 0, and
iterate until the change in the likelihood value is lower
than 0.01 times the number of free parameters, corre-
sponding roughly to a 0.01-σ uncertainty in the position
of the multivariate peak. Typically we find that 3 to 10
iterations are required for convergence.

Estimation of cosmological parameters, θ, is done by
brute-force grid evaluation of the pixel-space likelihood,

L(θ) ∝ − 1
2d

T C−1(θ)d√|C(θ)| . (7)

Here C(θ) is the covariance matrix evaluated with a
smooth spectrum, Cℓ, parametrized by θ. In this pa-
per, we only consider 1-dimensional likelihoods with a
parametrized spectrum of the form Cℓ = a Cfid

ℓ , a being
a scale factor and Cfid

ℓ a reference spectrum; the compu-
tational expense is therefore not a limiting factor. Two
different cases are considered, with a being either the
tensor-to-scalar ratio, r, or the amplitude of the EE spec-
trum, q, relative to the ΛCDM model.

5.4. Temperature Data Selection and Analysis
As described in Section 2, we dedicate one pair of mod-

ules to differential-temperature measurements. While
these modules are useful for calibration purposes, when
combined with our polarization data they also enable us
to make self-contained measurements of the TE and TB
power spectra.

For temperature, both pipelines adopt the pipeline-
A data-selection criteria used for polarization analysis
(see Section 5.2). The temperature-sensitive modules,
however, are far more susceptible to atmospheric con-
tamination than the polarization modules. Thus, these
cuts result in reduced efficiencies: 12.4%, 6.9%, and 6.8%
for patches CMB-1, CMB-2, and CMB-3, respectively33.
More tailoring of the cuts for these modules would im-
prove efficiencies.

In pipeline A, the analysis proceeds as described in Sec-
tions 5.1.3, 5.3.1, and 5.3.2 except for two aspects. First,
in the TOD processing a second-order polynomial is fit
and removed from each telescope half scan instead of a
linear function. This suppresses the increased contami-
nation from atmospheric fluctuations in the temperature
data. Second, we employ an iterative map maker based
on the algorithm described by Wright et al. (1996). Map
making for differential receivers requires that each pixel
is measured at multiple array pointings or crosslinked.
In order to improve crosslinking we divide the tempera-
ture data into only four maps by azimuth and deck an-
gle, rather than the 60 divisions used for polarization
analysis. To calculate TE and TB power spectra, polar-
ization maps are made for these four divisions, plus one
additional map that contains all polarization data with
pointings not represented in the temperature data.

For pipeline B the algorithms for making temperature
maps and estimating power spectra are identical to the
polarization case, as described in Sections 5.3.3 and 5.3.4.

33 Patch CMB-4 is excluded due to low data-selection efficiency
and a lack of sufficient crosslinking.
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6. ANALYSIS VALIDATION

The QUIET data analysis follows a policy of not look-
ing at the power spectra until the analysis is validated
using a set of predefined tests for possible systematic ef-
fects34. The validation tests consist of a suite of null
tests, comparisons across multiple analysis configura-
tions, and consistency checks among power spectra from
different CMB patches. Data-selection criteria, filtering
methods, and the division of data into maps for cross
correlation in pipeline A are all evaluated based on the
test results. We finalize all aspects of the data analysis
including calibration and evaluation of the systematic er-
ror before unveiling the power spectra (blind analysis).
The risk of experimenter bias is thereby eliminated.

Details of tests found in this section describe pipeline
A. While the pipeline B analysis follows a similar pro-
gram of null tests to verify the result, the increased
computational requirements of the maximum-likelihood
framework limit the number of tests that could be per-
formed and require those tests to be run using lower-
resolution maps than for the non-null analysis. The bulk
of this section treats validation of the polarization analy-
sis; at the end, we briefly describe the temperature anal-
ysis validation.

In a null test, the data are split into two subsets. Maps,
m1 and m2, are made from each subset. The power spec-
tra of the difference map, mdiff ≡ (m1 −m2)/2, are ana-
lyzed for consistency with the hypothesis of zero signal.
The null suite consists of 42 tests35, each targeting a
possible source of signal contamination or miscalibration.
These are highly independent tests; the data divisions for
different null tests are correlated at only 8.8% on average.
Nine tests divide the data by detector diode based on sus-
ceptibility to instrumental effects, such as instrumental
polarization. Ten tests target effects that depend on the
telescope pointing such as data taken at high or low el-
evation. Five tests divide based on the proximity of the
main or sidelobe beams to known sources such as the Sun
and Moon. Eight tests target residual contamination in
the TOD using statistics mentioned in Section 5.2. Ten
tests divide the data by environmental conditions such
as ambient temperature or humidity.

Each null test yields EE and BB power spectra in nine
ℓ bins, calculated separately for each CMB patch. Figure
6 shows the power spectra from one null test. Although
the EB spectra are also calculated for each null test, they
are assigned lesser significance since sources of spurious
EB power will also result in the failure of EE and BB null
tests. Combining all EE and BB points for all patches
and null tests in the null suite yields a total of 3006 null-
spectrum points. For each power-spectrum bin b, we
calculate the statistic χnull ≡ Cnull

b /σb, where Cnull
b is the

null power and σb is the standard deviation of Cnull
b in

MC simulations. We evaluate both χnull and its square;
χnull is sensitive to systematic biases in the null spectra
while χ2

null is more responsive to outliers. We run MC
simulations of the full null suite to take into account the
small correlation among the null tests and the slight non-

34 Some systematic effects, such as a uniform responsivity-
calibration error, cannot be detected by these techniques, and are
addressed in Section 8.

35 Only 41 null tests are performed for patch CMB-4; one test
is dropped because there are no data in one of the subsets.

Gaussianity of the χnull distribution. Non-Gaussianity is
caused by the small number of modes at low ℓ.
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Fig. 6.— EE and BB power spectra for the patch CMB-1 null
test between Q and U detector diodes. The inset shows the low-ℓ
region in detail.

As we refine the data-selection criteria based on the
results of the null suite, we use a second test to monitor
changes in the non-null power spectra. Using a blind
analysis framework, we compute the difference of the
power spectra between any two iterations of the data se-
lection without revealing the non-null spectra. Further,
we randomize the sign of the difference to hide the direc-
tion of the change; knowledge of the direction could allow
experimenter bias (e.g. a preference for low BB power).
Figure 7 shows the differences in the power spectra be-
tween the final configuration and several intermediate
iterations of the data selection, starting with data sets
that showed significant failures for the null-test suite.
Statistically significant differences indicate a change in
the level of contamination in the selected data set. Our
data-selection criteria are finalized when further itera-
tions only result in statistically expected fluctuations.
The sensitivity of this test is demonstrated by the fact
that the expected fluctuations are much less than the
statistical error of the final result.

Finally, the non-null power spectra are compared
among the four CMB patches. A χ2 statistic is computed
from the deviation of each patch’s non-null power spectra
from the weighted average over all patches. The total χ2

is compared to MC simulations to compute probabilities
to exceed (PTE).

When all aspects of the analysis are finalized, the last
round of null tests and CMB patch comparisons validates
the non-null–power-spectra results. Figure 8 shows the
distributions of the χnull statistic and of the PTEs cor-
responding to all χ2

null values from the full null suite. In
pipeline A, the distribution of χnull is consistent with the
expectation from MC simulations. The mean of the χnull

distribution is 0.02±0.02; the mean of the MC-ensemble
χnull distribution is also consistent with zero. The distri-
bution of the χ2

null PTEs is uniform as expected. Table 4
lists the PTEs for the sums of the χ2

null statistic over all
bins in each patch. Examinations of various subsets of
the null suite, such as EE or BB only, do not reveal any
anomalies. The EB null spectra do not indicate any fail-
ure either. Patch comparison PTEs are 0.16, 0.93, and
0.40 for EE, BB, and EB, respectively, demonstrating no
statistically significant difference among the patches.

A similar, but smaller, null suite is run by pipeline B.
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Specifically, 21 null tests are made at a HEALPix res-
olution of Nside = 128. The results obtained in these
calculations are summarized in the bottom panel of Fig-
ure 8, and total PTEs for each patch are listed in Table 4.
As in pipeline A, no anomalous values are found.

Finally, we make a comment on the usefulness of the
χnull distribution (as opposed to the χ2

null distribution)
for identifying and quantifying potential contaminants.
During the blind stage of the analysis, a positive bias in
the χnull distribution of 0.21 (0.19) was identified using
pipeline A (B) (corresponding to 21% (19%) of the statis-
tical errors). The number from pipeline A was obtained
when including auto correlations in its power-spectra es-
timator. When excluding auto correlations, and cross-
correlating maps made from data divided by time (day
by day), the bias decreased to 0.10. Further detailed
studies lead to the division of data into maps based on
the telescope pointing, as described in Section 5.3; the
result is an elimination of the observed bias.

The maximum-likelihood technique employed by
pipeline B intrinsically uses auto correlations, and a cor-
responding shift in the χnull distribution is seen in Figure
8. However, as will be seen in Section 7, the power spec-
tra from the two pipelines are in excellent agreement,
thereby confirming that any systematic bias coming from
including auto correlations is well below the level of the
statistical errors. We close this section by mentioning
that we know of no other CMB experiment reporting an
examination of the χnull distribution, which is sensitive
to problems not detected by examining the χ2

null distri-
bution only.

6.1. Validation of the Temperature Analysis
A smaller number of null tests is used for the temper-

ature analysis. Several are not applicable and others are
discarded due to lack of data with sufficient crosslink-
ing. Even so, we are able to run suites of 29, 27, and 23
TT null tests on patches CMB-1, CMB-2, and CMB-3,
respectively. We calculate the sums of χ2

null statistics,
yielding PTEs of 0.26 and 0.11 for patches CMB-1 and
CMB-2, respectively. No significant outliers are found for
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Fig. 8.— Null-Suite Statistics. The upper panel shows a his-
togram of the χnull values for the pipeline-A null suite (circles),
pipeline-B null suite (triangles), and the average of 1024 MC real-
izations of the pipeline-A null suite (gray histogram). Both data
and MC distributions show similar non-Gaussianity in the χnull
statistic. The shift in χnull seen for pipeline B, also seen in ear-
lier iterations of pipeline A, is discussed in the text. The lower
panel shows a histogram of PTEs calculated from the χ2

null statis-
tic (outliers from either side of the upper distribution manifest as
low PTEs).

TABLE 4
Null Suite Probability To Exceed by Patch

Patch Pipeline A % Pipeline B %

CMB-1 44 7
CMB-2 19 43
CMB-3 16 23
CMB-4 68 28

Note. — PTEs calculated from the sums of the χ2
null statistics,

for EE and BB spectra points, over the null tests for each patch.

these patches. However, a 5-σ outlier in a single test36
is found in patch CMB-3, implying contamination in its
temperature map. CMB-3 is therefore excluded from
further analysis. We confirm consistency between the
patches CMB-1 and CMB-2 with a PTE of 0.26.

With no significant contamination in TT, EE, or BB
spectra, one may be confident that the TE and TB spec-
tra are similarly clean. For confirmation, we calculate
TE and TB null spectra for the five null tests that are
common to the temperature and polarization analyses.
These yield PTEs of 0.61 and 0.82 for TE, and 0.16 and
0.55 for TB, for patches CMB-1 and CMB-2, respectively,
with no significant outliers. Patch consistency checks
give PTEs of 0.48 for TE and 0.26 for TB. Thus, the
TE and TB power spectra, as well as the TT, pass all
validation tests that are performed.

36 This null test divides the data based on array pointing.



12 The QUIET Collaboration

7. RESULTS

We report results from the first season of QUIET Q-
band observations: CMB power spectra, derived fore-
ground estimates, and constraints on the tensor-to-scalar
ratio, r.

7.1. Polarization Power Spectra
The CMB power spectra are reported in nine equally-

spaced bands with ∆ℓ = 50, beginning at ℓmin = 25.
Given the patch size, modes with ℓ < ℓmin cannot be
measured reliably. The correlation between neighboring
bins is typically −0.1; it becomes negligible for bins fur-
ther apart.

The EE, BB, and EB polarization power spectra es-
timated by both pipelines are shown in Figure 9. The
agreement between the results obtained by the two
pipelines is excellent, and both are consistent with the
ΛCDM concordance cosmology. Our findings and con-
clusions are thus fully supported by both pipelines. Only
the statistical uncertainties are shown here; we treat sys-
tematic errors in Section 8. Because the systematic er-
ror analysis was only done for pipeline A, we adopt its
power-spectra results (tabulated in Table 5) as the offi-
cial QUIET results.

The bottom sub-panels in Figure 9 show the window
and transfer functions for each bin computed by pipeline
A. Figure 10 shows the maps for patch CMB-1 com-
puted by pipeline B, and Figure 11 shows the QUIET
power spectra in comparison with the most relevant ex-
periments in our multipole range. Additional plots and
data files are online37.

Fitting only a free amplitude, q, to the EE spectrum38

relative to the 7-year best-fit WMAP ΛCDM spectrum
(Larson et al. 2010), we find q = 0.87± 0.10 for pipeline
A and q = 0.94±0.09 for pipeline B. Taking into account
the full non-Gaussian shapes of the likelihood functions,
both results correspond to more than a 10-σ detection of
EE power. In particular, in the region of the first peak,
76 ≤ ℓ ≤ 175, we detect EE polarization with more than
6-σ significance, confirming the only other detection of
this peak made by BICEP at higher frequencies. The χ2

relative to the ΛCDM model, with CEB
ℓ = CBB

ℓ = 0, is
31.6 (24.3) with 24 degrees of freedom, corresponding to
a PTE of 14% (45%) for pipeline A (B).

7.2. Foreground Analysis
In order to minimize possible foreground contamina-

tion, QUIET’s four CMB patches were chosen to be far
from the Galactic plane and known Galactic synchrotron
spurs. In these regions, contributions from thermal dust
emission are negligible in Q band. Spinning dust is ex-
pected to be polarized at no more than a few percent
in Q band (Battistelli et al. 2006; Lopez-Caraballo et al.
2010), so we expect the contribution to polarized fore-
ground emission in our patches to be small. We there-
fore consider only two dominant sources of possible fore-
ground contamination, namely compact radio sources
and Galactic diffuse synchrotron emission.

37 http://quiet.uchicago.edu/results/index.html
38 Only ℓ ≥ 76 are used in the EE fit and the χ2 calculation rela-

tive to ΛCDM because the first EE bin has a significant foreground
contribution; see Section 7.2.
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Fig. 9.— EE, BB, and EB power spectra from each QUIET
pipeline, all four patches combined. The insets show the low-ℓ
region in detail. Window and transfer functions for each ℓ bin
are shown below the corresponding power spectra in black and
gray, respectively. The window function combines the mode-mode–
coupling kernel Mℓℓ′ with the beam (Bℓ) and represents, in combi-
nation with the transfer function (Fℓ), the response in each band
to the true Cℓ spectrum. The EE point in the lowest-ℓ bin in-
cludes foreground contamination from patch CMB-1. For this dis-
play, pipeline A shows frequentist 68% confidence intervals while
pipeline B uses the diagonal elements of the Fisher matrix; the dif-
ference is most pronounced in the lowest-ℓ bin where the likelihood
is the most non-Gaussian.

To limit the effect of compact radio sources, we apply
a compact-source mask to our maps before computing
the power spectra, as described in Section 5. We also
evaluate the CMB spectra both with and without the full
WMAP temperature compact-source mask (Gold et al.
2010), and find no statistically significant changes. The
possible contribution from compact radio sources with
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TABLE 5
CMB-Spectra Band Powers from QUIET Q-Band Data

ℓ bin EE BB EB

25-75 a0.33+0.16
−0.11 −0.01+0.06

−0.04 0.00+0.07
−0.07

76-125 0.82+0.23
−0.20 0.04+0.14

−0.12 −0.10+0.11
−0.12

126-175 0.93+0.34
−0.31 0.24+0.28

−0.25 0.71+0.22
−0.20

176-225 1.11+0.58
−0.52 0.64+0.53

−0.46 0.18+0.38
−0.38

226-275 2.46+1.10
−0.99 1.07+0.98

−0.86 −0.52+0.68
−0.69

276-325 8.2+2.1
−1.9 0.8+1.6

−1.4 0.9+1.3
−1.3

326-375 11.5+3.6
−3.3 −2.2+2.7

−2.4 0.0+2.0
−2.0

376-425 15.0+6.2
−5.8 −4.9+5.3

−4.9 3.2+3.9
−3.9

426-475 21+13
−11 2+11

−10 4.5+8.3
−8.2

Note. — Units are thermodynamic temperatures, µK2, scaled
as Cℓℓ(ℓ + 1)/2π.
aPatch CMB-1 has significant foreground contamination in the

first EE bin.

Fig. 10.— Maps of patch CMB-1 in Galactic coordinates. The
top row shows our polarization maps with compact sources masked
(white disks). The bottom row shows E and B modes decomposed
using a generalized Wiener filter technique, implemented through
Gibbs sampling (Eriksen et al. 2004; Larson et al. 2007), including
only modes for ℓ ≥ 76 and smoothed to 1◦ FWHM; lower mul-
tipoles are removed due to a significant foreground contribution.
Note the clear difference in amplitude: the E modes show a high–
signal-to-noise cosmological signal while the B modes are consistent
with noise.

fluxes below the WMAP detection level (1 Jy) is small:
0.003µK2 at ℓ = 50 and 0.01µK2 at ℓ = 100 (Battye
et al. 2010). We therefore conclude that our results are
robust with respect to contamination from compact radio
sources and that the dominant foreground contribution
comes from diffuse synchrotron emission.

In Figure 12 we show the power spectra measured from
each patch. The CMB-1 EE band power for the first
bin is 0.55 ± 0.14 µK2, a 3-σ outlier relative to the ex-
pected ΛCDM band power of 0.13 µK2; while not signif-
icant enough to spoil the overall agreement among the
patches as shown in Section 6, this is a candidate for a
bin with foreground contamination.

To estimate the Q-band polarized synchrotron contam-
ination in our CMB patches, we process the WMAP7
K-band (23-GHz) map through pipeline A and estimate

its band power, ĈKK
b , as well as the cross spectra with

the QUIET Q-band data, ĈQK
b . These results are shown

for the first bin (25 ≤ ℓ ≤ 75; b = 1) in Table 6,
together with the corresponding QUIET band powers,
ĈQQ

b . Since foregrounds do not contribute to the sample
variance, the uncertainties for ĈKK

b=1 and ĈQK
b=1 are given

by instrumental noise only, including contributions from
both WMAP and QUIET. For ĈQQ

b=1, sample variance as
predicted by the ΛCDM model is also included.

There is significant EE power in patch CMB-1 as mea-
sured by ĈKK

b=1. We also find a correspondingly signifi-
cant cross correlation between the WMAP K band and
the QUIET Q band, confirming that this excess power is
not due to systematic effects in either experiment and is
very likely a foreground. No significant power is found in
any other case. The non-detection of foreground power
at ℓ > 75 is consistent with the expected foreground de-
pendence: ∝ ℓ−2.5 (Carretti et al. 2010), and the low
power found in ĈKK

b=1.
The excess power observed in the first EE bin of CMB-

1 is fully consistent with a typical synchrotron frequency
spectrum. To see this, we extrapolate ĈKK

b=1 from K band
to Q band, assuming a spectral index of β = −3.1 (Dunk-
ley et al. 2009), and calculate the expected power in CQK

b=1

and CQQ
b=1,

CQK
b=1 =

1.05
1.01

(
43.1
23

)β

ĈKK
b=1 = 2.57± 0.69 µK2 , (8)

CQQ
b=1 =

[
1.05
1.01

(
43.1
23

)β
]2

ĈKK
b=1 = 0.38± 0.10 µK2 , (9)

where the prefactor accounts for the fact that β is de-
fined in units of antenna temperature, and the uncer-
tainties are scaled from that of ĈKK

b=1. These predictions
are fully consistent with the observed values of ĈQK

b=1 and
ĈQQ

b=1, when combined with the ΛCDM-expected power.
We conclude that the excess power is indeed due to syn-
chrotron emission.

7.3. Constraints on Primordial B modes
We constrain the tensor-to-scalar ratio, r, using the

QUIET measurement of the BB power spectrum at low
multipoles (25 ≤ ℓ ≤ 175). Here r is defined as the
ratio of the primordial–gravitational-wave amplitude to
the curvature-perturbation amplitude at a scale k0 =
0.002Mpc−1. We then fit our measurement to a BB-
spectrum template computed from the ΛCDM concor-
dance parameters with r allowed to vary. For simplicity,
we fix the tensor spectral index at nt = 0 in comput-
ing the template39. This choice makes the BB–power-
spectrum amplitude directly proportional to r.

For pipeline A, we find r = 0.35+1.06
−0.87, correspond-

ing to r < 2.2 at 95% confidence. Pipeline B obtains
r = 0.52+0.97

−0.81. The results are consistent; the lower panel
of Figure 11 shows our limits on BB power in comparison
with those from BICEP, QUaD, and WMAP. QUIET lies
between BICEP and WMAP in significantly limiting r

39 Our definition of r agrees with Chiang et al. (2010)
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Fig. 11.— The top panel shows EE results with 68% C.L. error bars; the bottom panel shows BB 95% C.L. upper limits. For comparison,
we also plot results from previous experiments (Brown et al. 2009; Chiang et al. 2010; Larson et al. 2010) and the ΛCDM model (the value
r = 0.2 is currently the best 95% C.L. limit on tensor modes).

from measurements of CMB–B-mode power in our mul-
tipole range. Although we neither expected nor detected
any BB foreground power, the detection of an EE fore-
ground in patch CMB-1 suggests that BB foregrounds
might be present at a smaller level. We emphasize that
the upper limit we report is therefore conservative.

7.4. Temperature Power Spectra
Figure 13 compares the QUIET and WMAP Q-band

temperature maps and TT, TE, and TB power spectra.
Agreement with the ΛCDM model is good. This is a
strong demonstration of the raw sensitivity of the QUIET
detectors; the single QUIET differential-temperature as-
sembly produces a high–signal-to-noise map using only
189hours (after selection) of observations. The high sen-
sitivity of these modules makes them very useful for cali-
bration, pointing estimation, and consistency checks (see
Section 4).

8. SYSTEMATIC ERRORS

The passing of the null suite itself limits systematic
uncertainty, but to get well below the statistical errors,
dedicated studies are needed. They are important in
gaining confidence in the result and also in evaluating
the potential of the methods and techniques we use for
future efforts. We pay special attention to effects that
can generate false B-mode signals. Our methodology is
to simulate and then propagate calibration uncertainties
(see Section 4) and other systematic effects through the
entire pipeline. The systematic errors in the power spec-
tra are shown in Figure 14. The possible contaminations
are well below the statistical errors; in particular, the
levels of spurious B modes are less than the signal of
r = 0.1. This is the lowest level of BB contamination yet
reported by any CMB experiment. This section describes
how each effect in Figure 14 is determined and considers
three additional possible sources of contamination.

An uncertainty not shown in Figure 14 is that aris-
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Fig. 12.— CMB power spectra are shown for each patch individ-
ually. The top and bottom panels show the EE and BB spectra,
respectively. The different error bars for each patch mainly reflect
the amounts of time each was observed.

TABLE 6
Band and Cross Powers for ℓ = 25–75

Patch Spectrum ĈKK
b=1 ĈQK

b=1 ĈQQ
b=1

CMB-1 EE 17.4± 4.7 3.30± 0.55 0.55± 0.14
BB 4.8± 4.5 0.40± 0.41 0.06± 0.08
EB −6.2± 3.2 0.27± 0.38 0.10± 0.08

CMB-2 EE 5.5± 3.7 0.01± 0.56 0.23± 0.19
BB 4.6± 3.4 0.18± 0.48 −0.11± 0.13
EB −5.5± 2.8 −0.39± 0.41 −0.20± 0.12

CMB-3 EE 0.2± 1.9 0.64± 0.43 0.10± 0.18
BB −0.3± 2.6 0.33± 0.35 0.01± 0.13
EB 1.4± 1.7 −0.34± 0.30 −0.27± 0.11

CMB-4 EE −5.2± 5.1 0.7± 1.2 0.65± 0.58
BB −2.6± 5.2 −0.1± 1.1 −0.37± 0.52
EB −1.0± 3.9 0.0± 0.9 −0.15± 0.47

Note. — Power-spectra estimates for the first multipole bin
for each patch, computed from the WMAP7 K-band data and the
QUIET Q-band data. The units are ℓ(ℓ + 1)Cℓ/2π (µK2) in ther-

modynamic temperature. Uncertainties for ĈKK
b=1 and ĈQK

b=1 include

noise only. For ĈQQ
b=1 they additionally include CMB sample vari-

ance as predicted by ΛCDM. Values in bold are more than 2 σ away
from zero.

ing from the overall responsivity error estimate of 6%
(12% in power-spectra units). After including the effect
of possible time-dependent responsivity variations (4%,
see below), the power-spectra uncertainty is 13%. It is
multiplicative, affecting all power-spectra results inde-
pendent of multipole.
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Fig. 13.— The top row compares our temperature map to the
WMAP 7-year Q-band map (Jarosik et al. 2010) for patch CMB-1
in Galactic coordinates. Lower panels show the CMB temperature
power spectra: TT, TE, and TB.

8.1. Beam Window Function and Pointing
The uncertainty in the beam window function is an-

other multiplicative factor, one which increases with mul-
tipole. We estimate this uncertainty using the difference
of the beam window functions measured for the central
module and the modules of the differential-temperature
assembly, which are at the edge of the array. The differ-
ence is statistically significant, coming from the different
locations (with respect to the optics) in the focal plane;
it is expected from the pre-season antenna range mea-
surements.

Uncertainties in pointing lead to distortions in polar-
ization maps. E power will be underestimated and spuri-
ous B power (if the distortions are non-linear) generated
(Hu et al. 2003). We quantify these effects by using the
differences in pointing solutions from two independent
models: the fiducial model used for the analysis and an
alternative model based on a different set of calibrating
observations. We also modeled and included the effects
of the deck-angle–encoder shift which occurred for a por-
tion of the season (Section 4.3).
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Fig. 14.— Systematic uncertainty estimates for EE, BB, and EB power spectra. Estimates for a variety of effects (see text) are shown
for the three power spectra. In all cases, they are well below the statistical errors, which are also shown. In particular, the contaminations
to the primordial–B-mode signal, at multipoles below 100, are below the level of r = 0.1, even though we do not make a correction for the
largest contaminant, the monopole leakage.

8.2. Responsivity and Polarization Angle
Responsivity shifts, particularly within CESes, lead to

distortions in the maps. Full-pipeline simulations quan-
tify the shifts caused by variations in the cryostat or
electronics temperatures. Similarly shifts from using re-
sponsivities determined from the Moon data, Tau A data,
or from the sparse wire grid, rather than those from the
sky dips, are determined. We also incorporate the un-
certainty in the atmospheric-temperature model used in
analyzing the sky-dip data. The largest possible effects
on the power spectra are shown in Figure 14.

Uncertainties in the orientation of the polarization axes
of the modules can lead to leakage between E and B
modes. To quantify this leakage, we use the differences
in power spectra where these angles are determined from
Moon data, Tau A data, and the sparse–wire-grid data.
As expected, the largest effects show up in EB power.

8.3. Instrumental Polarization
As described in Section 4.5, the I to Q (U) leakage

coefficients for the QUIET detector diodes are small:
1% (0.2%). Except in the case of patch CMB-4, our
scanning strategy significantly reduces this effect with
the combination of sky and deck-angle rotation.

We estimate spurious Q and U in the maps for each
CES-diode using the WMAP temperature map and our
known leakages. Shown in Figure 14 are the estimates of
spurious EE, BB, and EB powers from full-pipeline sim-
ulations, where for each realization the spurious Q and
U are added to the Q and U from simulated ΛCDM E
modes. While this method has an advantage of being
able to use the real (not simulated) temperature map, it
does not incorporate TE correlation, which only affects
the spurious EE power. As a complement, we repeat the

study, but using simulated ΛCDM maps for both tem-
perature and polarization; this only changes the estimate
of spurious EE power by 30% at most. Because the spu-
rious power is as small as it is, we have treated it as a
systematic rather than correcting for it. Doing so would
give us a further order of magnitude suppression.

Differing beam ellipticities can also induce higher mul-
tipole polarization signals. We measure these leakages
from Tau A and Jupiter observations and find that the
higher-order multipoles are at most 0.1% of the main-
beam peak amplitude. The corresponding effects on the
power spectra, which are seen in Figure 14, are of little
concern.

8.4. Far Sidelobes Seeing the Sun
While we make cuts to reduce the effects of far side-

lobes seeing the Sun (Sections 2 and 5.1.3), small con-
taminations could remain. We make full-season maps
for each diode in Sun-centered coordinates and then use
these maps to add contamination to full-pipeline CMB
simulations. The excess power found in the simulations
is taken as the systematic uncertainty.

8.5. Other Possible Sources of Systematic Uncertainty
Here we discuss a few additional potential sources of

systematic uncertainty, which are found to be subdomi-
nant.

Ground-Synchronous Signals. QUIET’s far side-
lobes do see the ground for some diodes at particular
elevations and deck angles. Ground pickup that is con-
stant throughout a CES is removed by our TOD filters;
the net effect of this filtering in the full-season maps is a
correction of ≈ 1 µK.

The only concern is ground pickup that changes over
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the short span of a single CES. We find little evidence for
changes even over the entire season, let alone over a single
CES. We therefore conservatively place an upper limit on
such changes using the statistical errors on the ground-
synchronous signal. We start with the CES and module
with the largest ground pickup. We then simulate one
day’s worth of data, inserting a ground-synchronous sig-
nal that changes by its statistical error. Given the dis-
tribution in the magnitude of the ground-synchronous
signal and assuming that changes in this signal are pro-
portional to the size of the signal itself, by considering
that the signals from changing pickup add incoherently
into the maps made from multiple CES-diodes at a vari-
ety of elevations and deck angles, we estimate an upper
limit on residual B power from possible changing ground-
pickup signals. The result is . 10−4 µK2 at multipoles
below 100.

ADC Non-linearities. The possible residual after
the correction for the non-linearity in the ADC system
results in effects similar to the I to Q (or U) leakage
and the variation of the responsivity during the CES.
We estimate such effects based on the uncertainty in the
correction parameters, confirming that there is at most
a 3% additional effect for the leakage bias, and that the
responsivity effect is also small, less than half of the sys-
tematic error shown for the responsivity in Figure 14.

Data-Selection Biases. Cuts can cause biases if they
are, for example, too stringent. We expect none but to
be sure we apply our selection criteria to 144 CMB +
noise simulations. No bias is seen, and in particular we
limit any possible spurious B modes from this source to
. 10−3 µK2 at multipoles below 100.

9. CONCLUSIONS

QUIET detects polarization in the EE power spectrum
at 43GHz. We confirm with high significance the detec-
tion of polarization in the region of the first acoustic peak
(Chiang et al. 2010) in the multipole region ℓ = 76–175.
We find no significant power in either BB or EB between
ℓ = 25 and ℓ = 475. We measure the tensor-to-scalar
ratio to be r = 0.35+1.06

−0.87.
These results are supported by a very extensive suite of

null tests in which 42 divisions of data were used for each
of 33 different cut configurations. The selection criteria
and systematic errors were determined before the power
spectra themselves were examined. Biases were revealed
during this process, the last of which was a contami-
nation present in the null spectra at the level of about
20% of the statistical errors, but eliminated when cross-
correlating maps with differing telescope pointings. The
robustness of the final results is further supported by
having two pipelines with results in excellent agreement,
even though one uses only cross correlations while the
other also uses auto correlations.

Several possible systematic effects are studied with full
end-to-end simulations. The possible contaminations in
the B-mode power are thereby limited to a level smaller
than for any other published experiment: below the level
of r = 0.1 for the primordial B modes; simply correcting
for the known level of instrumental polarization would
reduce this to r < 0.03. This very low level of system-
atic uncertainty comes from the combination of several
important design features, including a new time-stream
“double-demodulation” technique, Mizuguchi–Dragone

optics, natural sky rotation, and frequent deck rotation.
The correlation modules we use have a polarization

sensitivity (Q and U combined) of 280 µK
√

s, leading to
an array sensitivity of 69µK

√
s. Further, the 1/f noise

observed in our detectors is small: the median knee fre-
quency is just 5.5mHz. One important outcome of this
work, then, is the demonstration that our detectors, ob-
serving from a mid-latitude site, give excellent sensitivity
and systematic immunity.

Because of our mid-latitude site, we are driven to col-
lect data in four separate patches. While we lose some
sensitivity (compared to going deeper on a single patch),
there are a few advantages that we have exploited. The
patches are scanned differently, in terms of time of day
and the degree of crosslinking, and these differences allow
some important systematic checks. Another advantage
concerns foregrounds.

Foreground contamination is expected to be one of
the main limiting factors in the search for primordial B
modes. Indeed we report a 3-σ detection of synchrotron
emission in one of our four CMB patches, originally cho-
sen for their expected low foreground levels. Our de-
tection is only in EE but assuming a similar BB level
and extrapolating to the foreground minimum of about
95GHz, we would have synchrotron contamination at the
level of r = 0.02. Neither WMAP nor Planck will have
enough sensitivity (Tauber et al. 2010) to sufficiently con-
strain the polarized synchrotron amplitude at this level.
In fact, our Q-band polarization maps are already as deep
or deeper than what Planck will achieve at the same fre-
quency. Dedicated low-frequency observations are clearly
needed to achieve such constraints. When foreground
cleaning becomes important, consistency among separate
patches will be an important handle on our understand-
ing.

Further progress must be made through larger arrays
and longer integration times. In hand we have data col-
lected by the 90-element W-band array with similar sen-
sitivity to our Q-band array and more than twice the
number of observing hours. Results from the analysis of
that data set will be reported in future publications. A
W-band receiver with the sensitivity to reach below the
level of r = 0.01 is under development.
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ABSTRACT
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave
Background, targeting the imprint of inflationary gravitational waves at large angular scales (1◦). Be-
tween October 2008 and December 2010, two independent receiver arrays were deployed sequentially
on a 1.4 m side-fed Dragonian telescope. The arrays use a highly compact design based on High Elec-
tron Mobility Transistors (HEMTs) that provide simultaneous measurements of the Stokes variables
Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency
of 43 GHz, has a sensitivity of 69µKs1/2 and an instrumental systematic error in the tensor-to-scalar
ratio of r < 0.1, the highest sensitivity ever achieved in this band and the lowest systematic error
reported so far. The 84-element W-band polarimeter array has a sensitivity of 78µKs1/2 at a central
frequency of 95 GHz. The two arrays cover multipoles in the range ` ≈ 25−950. These are the largest
HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and
imperfections that can lead to systematic errors for the telescope and instrument.
Subject headings: cosmology: cosmic microwave background — cosmology: observations
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measured temperature anisotropy. However a measure-
ment of the E-mode polarization can break degenera-
cies in cosmological parameters inherent to measure-
ments of the temperature anisotropy spectrum alone. A
divergence-free component of the polarization field (B-
mode polarization) is generated by lensing of E-mode
polarization by intervening large-scale structure along
the line-of-sight. It can be used to probe structure for-
mation in the early universe. A large class of inflation-
ary models exists for which each predicts a spectrum of
gravity waves generated during inflation which could pro-
duce a measureable B-mode amplitude expected to peak
around angular multipole of ` ≈100 (Seljak & Zaldar-
riaga 1997; Kamionkowski et al. 1997; Dodelson et al.
2009). The detection of these B-modes, parameterized
by the tensor-to-scalar ratio r, would provide a mea-
surement of the energy scale of inflation. An additional
contribution to both E-mode and B-mode polarization
spectra is expected from polarized foreground emission.
Understanding the spectral dependence and spatial dis-
tribution of foregrounds is critical for pushing the limits
of B-mode polarization detection or constraint.

The goal of detecting or placing competitive con-
straints on the inflationary B-mode CMB polarization
signature led us to optimize QUIET30 for both sensitiv-
ity and control of systematic errors. We demodulate the
signal at two phase-switching rates (“double demodula-
tion”) to reduce both the 1/f noise and instrumental sys-
tematic effects. In addition, our scan strategy, consisting
of constant elevation scans performed between regular el-
evation steps, frequent boresight rotations, and natural
sky rotation reduces systematic errors. Using arrays with
two widely separated central frequencies having good at-
mospheric transmission allows us to separate a cosmo-
logical signal from galactic foreground signals.

This paper describes the QUIET instrument, designed
to measure the CMB polarization and the synchrotron
foreground. QUIET deployed two arrays of 19 and 90
HEMT-based coherent detector assemblies in the Chaj-
nantor plateau in the Atacama Desert of Northern Chile.
The extreme aridity of this region results in excellent ob-
serving conditions for most of the year (Radford & Hold-
away 1998). The arrays operate at central frequencies
of 43 GHz (Q-band) and 95 GHz (W-band) respectively
and are the largest HEMT-based arrays used to date. In
the focal plane, each assembly contains passive waveg-
uide components and a module, a small interchangeable
HEMT-based electronics package. Within these two ar-
rays, 17 (84) of the Q-band (W-band) assemblies are
polarimeters, each measuring simultaneously the Q, U,
and I Stokes parameters. The remaining 2(6) assemblies
measure the CMB temperature anisotropy (“differential-
temperature assemblies”). The Q-band (W-band) as-
semblies are cooled to ≈ 20K (≈ 26K) in a cryostat
and placed at the focus of a 1.4 m side-fed Dragonian
telescope enclosed in an absorbing ground screen. The
resulting full width at half maximum (FWHM) angular
resolution is 27.3′ (12.2′) for each Q-band (W-band) as-
sembly.

30 Bruce Winstein, who died in 2011 February soon after obser-
vations were completed, was the principal investigator for QUIET.
His intellectual and scientific guidance were crucial to the experi-
ment’s success.

Tables 1 and 2 lists the salient characteristics of the
QUIET experiment. Figures 1(a) and 1(b) show views
of the receiver, telescope, and electronics enclosure. The
following sections describe the optics, observing site
and strategy, cryogenics and the optical window proper-
ties, polarimeter and differential-temperature assemblies,
electronics, and calibration tools. Finally, we present a
detailed description of the performance of both receivers.

2. OBSERVING SITE AND STRATEGY

Observations (Table 3) were performed at the Chaj-
nantor plateau at 5080 m altitude in the Atacama Desert
of northern Chile (67◦45′42′′W 23◦1′42′′S). Atmospheric
conditions were monitored using data from a 183 GHz
line radiometer sited at the APEX telescope (Güsten
et al. 2006), located ∼2.5 km away from the QUIET
site. Typical atmospheric optical depths in our observ-
ing bands over all scanning elevations at Chajnantor are
0.02–0.1 (Figure 2). The median precipitable water va-
por (PWV) was 1.2 mm (0.94 mm) during the Q-band
(W-band) observing season. We found for the Q-band
data set we kept 82% of the data below the median PWV,
and 59% of the data above the median PWV. For the
W-band, we kept 75% below the median PWV and 54%
below.

We employed a fixed-elevation, azimuth-scanning tech-
nique: a ∼ 15◦ × 15◦ field (the fields are given in Ta-
ble 2) was scanned in azimuth as it drifted through
the ∼7◦ field-of-view. These constant elevation scans
(‘CES’) typically lasted ∼1.2–1.5 hours. The telescope
then re-tracked the field center and began another CES.
By scanning at constant elevation for a given scan, we ob-
served through a constant column density of atmosphere
so that only weather variations within a scan contributed
an atmospheric signal. Most calibration sources were
observed at constant elevation, but occasionally we em-
ployed raster scans, changing elevation between azimuth
slews to more rapidly observe a calibration source.

The infrastructure and three-axis driving mount pre-
viously used for the CBI experiment (Padin et al. 2002)
was refurbished for QUIET, in part to enable rapid az-
imuth scanning. The mount control software is an aug-
mented version of the CBI control system. The principal

TABLE 1
Instrument Overview

Band Q W

Frequency (GHz) 43 95

# of Polarization Assemblies 17 84

# of Temperature Anisotropy Assemblies 2 6

FWHM Angular Resolution (arcmin) 27.3 12.2

` range ≈ 25−475 ≈ 25−950

Instrument Sensitivity (µK
√
s) 69 78

Telescope (common to Q and W) Side-fed Dragonian

Main Reflector Diameter (mm) 1400

Secondary Reflector Diameter (mm) 1400

TABLE 2
Fields of Observation

Field Centers (J2000 RA,Dec) 12h04m −39◦

05h12m −39◦

00h48m −48◦

22h44m −36◦

Field Size ≈ 15◦ × 15◦
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(a)

(b)

Fig. 1.— a: The QUIET instrument before placement upon
mount, showing the electronics enclosure, cryostat, and reflectors.
b: The mounted instrument shown within an absorbing ground
screen.

TABLE 3
Partition of the QUIET Q-band and W-band seasons by

observation type, with no data cuts. ‘Other’ includes data
taken during engineering tests, aborted scans, etc.

Band Q W

Season start 2008 Oct 24 2009 August 12
Season end 2009 June 13 2010 December 22
Total Observing Hours 3458 7493
CMB Observing (%) 77 72
Galactic Observing (%) 12 14
Calibration (%) 7 13
Other (%) 4 1

modifications include the addition of support for rapid
scanning of the azimuth axis of the mount and for mon-
itoring and archiving of data from the receiver. This
software consists of a central control and data collec-
tion program, a graphical user interface program, a real-
time computer running the VxWorks2 operating system
to control the telescope mount, and a real-time computer
running Linux to control the receiver. The mount was
operated by a queue of non-interactive observing scripts
written in a custom control language. The modifications
that were made were aimed at supporting high scanning
accelerations without overwhelming the counter-torque
in the anti-backlash system of the azimuth drive. Track-

2 www.windriver.com

Fig. 2.— Zenith optical depth for typical atmospheric conditions
at the Chajnantor plateau (left scale) and representative QUIET
module bandpass responses (right scale). The atmospheric spec-
trum is calculated with the ATM model from Pardo et al. (2001).

ing accuracy is sacrificed for high scanning speeds and
accelerations. However, accurate pointing information
can be reconstructed during the data analysis from fre-
quent readouts of the axis encoders and a dynamic model
of the mechanical response of the mount. To facilitate
this, the CBI control system was also modified to acquire
encoder readouts at 100 Hz. The modified control system
supports scans with coasting speeds of up to 6 ◦/s and
turnaround accelerations of up to 1.5 ◦/s2. The accuracy
of the encoder readout timestamps is ∼0.5 ms resulting in
a worst-case pointing error of∼8 ′. The achieved pointing
accuracy of the entire system is 3 ′.5 rms for the Q-band
array (QUIET Collaboration et al. 2011) and 0.2′ rms for
the W-band array (Collaboration 2012). We achieved a
mean azimuthal scan speed of ∼ 5◦/s. The azimuthal
speed on the sky is elevation dependent, it corresponds
to ∼ 2◦/s on the sky, yielding azimuth scan frequencies
of 45–100 mHz. As each 15◦×15◦ observing field rises,
its azimuthal extent with respect to the fixed telescope
mount increases. Avoiding scanning through the azimuth
limit (∼440◦) of the telescope leads to an effective upper
elevation limit of 75 ◦. The lower limit of the elevation
range of the mount is 43 ◦.

In addition to the azimuth and elevation axes, the
mount provides a third rotation axis through the bore-
sight. We rotate this boresight angle (‘deck angle’) once
per week in order to separate the polarization on the sky
from that induced by systematic errors such as leakage
from temperature to polarization.

3. OPTICS

The QUIET optical chain consists of a classical side-fed
Dragonian antenna (Dragone 1978) coupled to a platelet
array of diffusion-bonded corrugated feed horns cooled to
' 25 K inside a cryostat. The outputs of these optical el-
ements are directed into the polarimeter and differential-
temperature assemblies described in Sections 5.1 and 5.3,
respectively. The main reflector (MR) and sub-reflector
(SR) as well as the aperture of the cryostat are en-
closed by an ambient temperature (' 273 K), absorbing
ground shield. The design and characterization of the
telescope, feed horns and ground shield are described in
Sections 3.1, 3.2, and 3.3, respectively. The optical per-
formance, as measured by the main beam, the sidelobes
and the instrumental polarization, is described in Sec-
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tions 3.4, 3.5, and 3.6, respectively.

3.1. Telescope
The telescope design requirements include: a wide

field of view, excellent polarization characteristics with
minimal beam distortion and minimal instrumental po-
larization, and minimal spillover and sidelobes that
could otherwise generate spurious polarization. The lat-
ter requirements have often been met by CMB exper-
iments by using either classical, dual offset Cassegrain
antennas (e.g.Barkats et al. (2005)), Gregorian anten-
nas (e.g.Meinhold et al. (1993)), or shaped reflectors
(e.g.Page et al. (2003b)). QUIET is the first CMB po-
larization experiment to take advantage of the wide field
of view enabled by a classical Dragonian antenna (Imbri-
ale et al. 2011). An additional advantage of the classical
Dragonian antenna is that it satisfies the Mizuguchi con-
dition (Mizugutch et al. 1976) which, when combined
with the very low cross-polar characteristics of the coni-
cal corrugated feed horns, yields very low antenna contri-
bution to the instrumental polarization. As pointed out
by Chang & Prata (2004), a classical Dragonian antenna
affords two natural geometries, a front-fed design and a
side-fed (or crossed) design. QUIET uses the side-fed de-
sign because it allows for the use of a larger cryostat, and
hence focal plane array, without obstructing the beam.

3.1.1. Telescope Design
The design of the reflectors follows the procedure out-

lined by Chang & Prata (2004), and it is augmented
with physical optics program (Imbriale & Hodges 1991)
to predict beam patterns. This procedure relies on the
specification of the first five design parameters given in
Table 4 and shown in Figure 3. Once these parame-
ters are specified, a number of other useful parameters
can be computed, including the MR focal length and
the SR eccentricity. The actual MR circular diameter
was decreased slightly to 1400 mm, as noted in Table 4.
Similarly, the actual SR circular diameter was increased
slightly, also to 1400 mm, and this resulted in an in-
creased value of the actual SR edge angle given by 20◦
in Table 4. The oversized SR reduces feed spillover for
the horns on the edge of the array. The design values
(not the actual values) shown in the top half of Table 4
were used to establish the calculated values shown in the
lower half of Table 4.

3.1.2. Telescope Fabrication and Alignment
The telescope consists of two reflectors, the receiver

cryostat (Figure 1(a)) and the structure that supports
them (the ‘sled’). The reflectors are each made of a solid
piece of 6061-T6 aluminum, light-weighted on the reverse
side leaving narrow ribs on a triangular grid, and at-
tached with adjustable hexapod struts to the sled. The
sled in turn is mounted on a deck structure, which also
supports the ground shield, the receiver electronics en-
closure, the telescope drive crates, the uninterruptable
power supply, and the expanded steel walkways. The
deck is attached directly to the deck bearing.

After the fabrication of the reflectors and sled, the tele-
scope was assembled and pre-aligned using a MetricVi-
sion MV200 laser radar. This system was used to mea-
sure both the reflector surfaces as well as the absolute

TABLE 4
Telescope Design Parameters are listed where negative

angles are measured clockwise with respect to the
vertical axis.

description, parameter design/actual value
MR circular aperture diameter, D 1470/1400 mm

SR edge ∠, θe 17◦/20◦

MR-SR separation, ` 1270 mm
MR offset ∠, θ0 −53◦

∠ between MR and horn axes, θp −90◦

calculated value
MR focal length, F 4904.1 mm
SR eccentricity, e 2.244

∠ between SR and MR axis, β −63.37◦

SR interfocal distance, 2c 6516.1 mm
MR offset distance, d0 4890.2 mm

Fig. 3.— This scaled schematic of the QUIET side-fed Dragonian
antenna shows a number of the useful design parameters. Table 4
provides a description of each parameter and either the design value
or the calculated value.

positions of tooling balls on the perimeter of each reflec-
tor once the reflectors are aligned to the focal plane. The
root-mean-square (rms) deviations from the MR and SR
design surfaces are 38 µm and 28 µm, respectively, once
a small fraction (< 1%) of the outlier measurements from
the perimeter of each reflector are removed.

In order to align the reflectors after assembling them
on the site, an animated 3-D model of the telescope was
constructed which also accounts for additional tooling
balls on the cryostat face. These tooling balls have well
measured displacements from the platelet array. Using
the model, a transformation matrix was established that
mapped turnbuckle adjustments to tooling ball displace-
ments for each reflector. After assembly at the site, the
distances between the tooling balls were measured with a
custom-built vernier caliper with a range of 2.4 m. The
transformation matrix was inverted and applied to the
tooling ball displacements in order to establish the proper
turnbuckle adjustments. The turnbuckles were then ad-
justed to bring the system into alignment. This method
enabled convergence to an aligned state after just three
iterations. The 17 measurements used to establish the
position of the secondary with respect to the cryostat
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TABLE 5
Platelet Array Design Parameters

Frequency # of L×W×H Mass Aperture Throat # of Horn Semi-flare
(band/GHz) Feeds (mm × mm × mm) (kg) Diameter Diameter Grooves Separation Angle

(mm) (mm) (mm) (degrees)
Q/39–47 19 281.7×427.3×370.1 43.7 71.78 6.69 104 76.20 7.6◦

W/89–100 91 129.1×427.8×370.5 20.6 31.62 2.97 103 35.56 7.6◦

(for both the Q- and W-band systems) yielded an rms
error of < 400 µm when compared to the ideal position-
ing. Similarly the 14 measurements used to establish the
position of the primary with respect to the secondary
yielded an rms error of < 500 µm when compared to
the ideal positioning as established using the laser radar.
Tolerance studies allowing for comparable displacements
show that there is minimal impact on the optical perfor-
mance.

3.2. Feed Horns
The requirements for the feed horns include high beam

symmetry, efficiency, gain and bandwidth, as well as
low sidelobes and cross-polarization. These requirements
are satisfied by conical, corrugated feed horns (Kay
1962) (Clarricoats & Olver 1984). Standard production
techniques for corrugated feed horns (e.g. computer-
numerically-controlled lathe machining and electroform-
ing) are prohibitively costly for the large number of feeds
for the W-band array. A lower-cost option is described
in the next subsection.

3.2.1. Platelet Array Design

A 91-element W-band and a 19-element Q-band
platelet array of hexagonally-packed, conical, corrugated
feed horns were designed for QUIET (Gundersen & Wol-
lack 2009), (Imbriale et al. 2011). Each array is ma-
chined from aluminum 6061-T6 and consists of a number
of thin platelets each with a single corrugation, a num-
ber of thick plates each with multiple corrugations, and
a base plate. The assembly of platelets and plates is then
diffusion bonded together. Table 5 provides many of the
parameters of each array.

Due to the side-fed geometry of the telescope, the feed
horns must have relatively high gain (' 27 to 28 dB) in
order to provide a low edge taper of < −30 dB for both
the Q and W-band systems. This dictates the aperture
size of the feed horns and hence the horn-to-horn spac-
ing. For the W-band horns, this spacing is commensu-
rate with the size of the modules. Most of the dimensions
of the Q-band horns are scaled by the ratio of the fre-
quencies (∼ 90/40 = 2.25) which results in a Q-band
horn spacing that is larger than the Q-band modules.
These horn spacings give rise to angular separations of
1.75◦(0.82◦) between adjacent beams in the Q(W) sys-
tems and result in fields of view of 7.0◦ and 8.2◦ for the
Q and W systems, respectively.

The number of corrugations is fixed at three per wave-
length for each horn and a semi-flare angle of 7.6◦ is
chosen using a design procedure (Hoppe 1987), (Hoppe
1988) that ensures both acceptable cross-polar levels and
return loss. This optimization procedure also adjusts the
depth of the first six corrugations of each horn in order

to reduce the reflection coefficient to better than -32 dB
over the full anticipated band of operation.

3.2.2. Platelet Array Testing
A vector network analyzer (VNA) was used to measure

the return loss of each horn in each array. Each measure-
ment consisted of attaching one horn in a platelet array
to one port of the VNA using a commercially available
circular-to-rectangular transition. A sheet of microwave
absorber was placed at 45◦ in front of the horns at a
distance of ' 1 m. The return losses for five of the 19 Q-
band horns are shown in Figure 4 and are similar for the
W-band feed horns. Maximum reflection strengths (neg-
ative return loss) are listed in Table 6. For comparison,
electroformed horns that are identical in design to the Q
and W-band horns were fabricated. The array values in
Table 6 are comparable to but not quite as good as the
electroformed horns or the theoretical predictions both
of which were < −30 dB across the band.

Beam patterns were measured for all 91 horns in the
W-band array and 13 out of 19 horns in the Q-band ar-
ray. A synthesizer combined with ×3 and ×6 multipliers
generated the source signals at 40 and 90 GHz respec-
tively. A standard gain horn was used as a source an-
tenna. The platelet arrays were mounted on an azimuth-
elevation mount so that the source was in the far-field of
the platelet array horns. The source signals were mod-
ulated at 1 kHz and a lock-in amplifier connected to a
detector diode on the platelet array detected the signal.
A coaligned, alignment laser ensured that the source horn
and platelet array horn were parallel and axially aligned
to each other. A digital protractor with an accuracy of
±0.05◦ ensured that the source and receiver horns’ po-
larization axes were coincident for the copolar patterns
or perpendicular to each other for the crosspolar pat-
terns. Several measurements were made on each horn in-
cluding E- and H-plane copolar patterns as well as their
corresponding crosspolar patterns. The patterns were
taken by keeping the source horn static and rotating the
platelet array horn in azimuth about a vertical axis that
intersected the horns phase center.

The beam patterns of typical Q-band and W-band
horns are shown in Figure 5. This figure shows both
E- and H-plane copolar patterns as well as crosspolar
patterns for the platelet feeds and for an electroformed
feed with identical design parameters. The figure also
shows the theoretical model responses. In all cases the
E- and H-plane copolar patterns are consistent with both
the model and the electroformed feed measurements out
to the −30 dB level. Upper limits of −33 dB are set
on the E-plane crosspolar levels. The H-plane crosspolar
patterns are not in as good agreement with the model,
which predicts both E- and H-plane crosspolar levels at
the < −40 dB level. The largest discrepancies are similar



6 The QUIET Collaboration

TABLE 6
Measured Platelet Array Performance

Frequency FWHM Gain Crosspol Reflection Insertion
(band/GHz) (deg) (dB) E/H Strength Loss

(dB) (dB) (dB)
Q/39–47 8.3–6.9 27.2–28.5 < −34/− 29 < −25 < −0.1

W/89–100 8.3–7.4 27.1–28.0 < −31/− 29 < −24 < −0.1

Fig. 4.— Return loss measurements for five of the 19 Q-band
horns.

Fig. 5.— Beam pattern measurements of a typical Q-band
(W-band) horn in each platelet array along with an electroformed
equivalent horn are shown in the top (bottom) two figures. The
left-hand subfigures show the E-plane results and the right-hand
subfigures show the H-plane results. The solid line in each case
shows the theoretical prediciton of the copolar responses. The the-
oretical predictions of the crosspolar responses are all below -40 dB
and are not shown. Upper limits of -33 dB are placed on the E-
plane crosspolar responses, while the H-plane crosspolar responses
are measured at the -30 to -33 dB level for both Q and W-band
platelet array horns as well as for their electroformed equivalents.

in shape to the Q-band H-plane crosspolar measurements
shown in Figure 5 and have a non-null crosspolar bore-
sight response. This type of response is typical of angu-
lar misalignment between the source and receiver probes.
The level of the response is consistent with the precision
of the digital level. The W-band H-plane crosspolar re-
sponse does have a null on boresight and is likely the
true crosspolar response. Given that the platelet arrays’
crosspolar responses are consistently higher than the cor-
responding electroformed horns’ responses suggests that
either the machining or the diffusion bonding process
leads to somewhat compromised performance. However,
none of the measured feeds has crosspolar levels > −29
dB. Table 6 summarizes the results of the beam pattern

measurements.
Upper limits on the insertion loss were obtained during

the return loss measurements of both the W-band and
Q-band platelet arrays by placing a flat aluminum plate
in front of the horn and generating an effective short. In
both cases the measured reflection strength allows one to
set a lower bound on the feeds’ room temperature trans-
mission efficiency of > 99%. Assuming ohmic losses, this
transmission efficiency is expected to increase to > 99.5%
upon cooling to 25 K. This is due to the fact that the ratio
of the electrical resistivity for aluminum 6061-T6 oper-
ating at 25 K to the resistivity at 293 K is 0.35 (Clark
et al. 1970), and this results in reduced ohmic losses.

3.3. Ground Shield
The side-fed Dragone design minimizes but does not

eliminate sidelobe power. Simulations show that a num-
ber of sidelobes are expected. The performance of the
ground shields is described in detail in Section 3.5. In
order to minimize the radiation from the ground and
from celestial sources entering the receiver through side-
lobes, an absorbing, comoving ground shield is employed.
This shields the instrument from varying ground and Sun
pick-up and provides a stable, essentially unpolarized
emission source that does not vary during a telescope
scan. The ground shield structure (Figure 1(b)) consists
of two parts: the lower ground shield is an aluminum
box that encloses both reflectors and the front half of
the cryostat; the upper ground shield (UGS) is a cylin-
drical tube that attaches to the lower ground shield di-
rectly above the MR. The external surface of the ground
shield is coated in white paint in order to reduce diurnal
temperature variations and to minimize radiative load-
ing. The interior of the ground shield is coated with a
broadband absorber2 that absorbs radiation and re-emits
it at a constant temperature, allowing the ground shield
to function as an approximately constant Rayleigh-Jeans
source in both Q and W bands. The UGS was not in
place for the Q-band measurement. It was installed in
January 2010, approximately a third of the way through
the W-band measurements.

3.4. Main Beam Performance
The main beam profiles are primarily determined from

observations of Jupiter. Additional observations of Tau
A are performed to check the main lobe response, to mea-
sure the polarized responsivity, to determine the polar-
ization angles and to characterize instrumental polariza-
tion. Tau A and Jupiter are used for main beam charac-

2 The absorber is Emerson Cumming HR-10
(www.eccosorb.com) and is covered with Volara. The Volara
is transparent at our observing frequencies and acts as weather-
proofing.
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Fig. 6.— Normalized beam maps of Jupiter are shown on the
left for representative differential-temperature assemblies for the
Q- and W-band systems with contours at 0.8, 0.5, and 0.2. The
corresponding azimuthally-averaged beam profiles for each map are
shown on the right in comparison with the theoretical prediction
(solid line). Similar maps and profiles of TauA were measured
using the polarimeter assemblies but at a reduced signal-to-noise.

terization since they are the brightest polarized and un-
polarized, compact sources in the sky, respectively. Fig-
ure 6 shows beam patterns of Jupiter for a differential-
temperature assembly in each of the Q and W-band ar-
rays. These measurements are consistent with the lower
signal-to-noise main beam profiles measured using Tau
A once the slightly different instrumental bandpasses,
source spectra, and positions in the focal plane are taken
into account. The main beam is used to compute the
solid angle ΩB , the main beam forward gain, Gm = 4π

ΩB
,

and the telescope sensitivity,

Γ =
10−26c2

2kBν2
e ΩB

KJy−1 (1)

in terms of the effective ,

νe =
∫
νf(ν)σ(ν)dν∫
f(ν)σ(ν)dν

(2)

for a given instrumental bandpass f(ν) and source spec-
trum σ(ν). The source spectra of Tau A and Jupiter are
based on the WMAP data (Weiland et al. 2011). A Tau
A source spectrum with σ ∝ ν−0.302 is assumed for the
calculation of the effective frequency for the Tau A mea-
surements. An empirical fit to WMAP’s measurements
of Jupiter’s brightness temperatures yields a source spec-
trum of the form

σ(νGHz) =
2kBν

2
GHz

c2
(96.98 + 2.175νGHz

− 2.219× 10−2ν2
GHz + 8.217× 10−5ν3

GHz).
(3)

Similarly a source spectrum of the form

σ ∝ ν4 exp(hν/kBTCMB)/(exp(hν/kBTCMB)− 1)2 (4)

is used to compute the effective frequency for unre-
solved CMB fluctuations. Equations 1 and 2 explicitly

assume Gm ∝ ν2.
Table 7 provides a summary of the mean values of these

quantities for the Q-band and W-band polarization and
total-power modules for a source spectrum of the form 4.
The Q-band total power values are for the lone Q-band
differential-temperature assembly, while the Q-band po-
larization values are for the central pixel which is typical
for the array. Both the W-band total power and polar-
ization values shown in Table 7 are averaged over the
respective differential-temperature and polarization ar-
ray elements using an inverse-variance weighting.

The shape of the main beam and its uncertainties are
used to compute the instrumental window function and
its associated uncertainties (Monsalve 2010). Initially, an
arbitrarily oriented, 2-D, elliptical gaussian beam is fit to
the data shown in Figure 6. If σa and σb represent the
beam widths of the the semi-major and semi-minor axes
of the elliptical gaussian (with σa ≥ σb), then the elonga-
tion is defined by ε = σa−σb)

(σa+σb)
. Typical elongations were

found to be < 0.02 and averaged about 0.01. This low
elongation, and the fact that the CMB scans use a com-
bination of natural sky rotation and deck angle rotation,
implies that the beams are well described by an axially-
symmetric beam. As described by Monsalve (2010), a
Hermite expansion is applied to the symmetrized beam
from which the transfer function and covariance matrix
may be calculated (Page et al. 2003a).

3.5. Sidelobe Characterization
Two different methods are used to measure sidelobes.

These included pre-deployment antenna range measure-
ments and in-situ measurements of a bright, near-field
source. In addition, unintentional measurements of the
sun in the sidelobes also enabled their characterization.
These three measurements and their results are discussed
in more detail here.

3.5.1. Antenna Range Measurements of Sidelobes
The telescope was installed on the Jet Propulsion Lab-

oratory’s Mesa Antenna Measurement Facility for mea-
surements of both the main lobe and far sidelobes at
both 40 and 90 GHz. The telescope was mounted on
an elevation-over-azimuth positioner with 4′′ pointing ac-
curacy. Individual electroformed versions of the Q and
W-band horns, described in Section 3.2.2, were used for
the range measurements. The range measurements were
conducted before the ground shields were fabricated, so
the sidelobe results are only appropriate for the telescope
in its bare configuration. The measurements made use
of the facility’s Scientific Atlanta model 1797 heterodyne
receiver system which enabled repeatable measurements
down to −90 dB of the peak power level. A combina-
tion of a source synthesizer, multiplier and amplifier was
used to generate ' 100−−200 mW of power at each fre-
quency. The sources were separately connected to corru-
gated feeds at the focus of a small cassegrain antenna at a
distance of 914 m from the telescope. Due to limitations
of the mount, only a simple principal plane cut within
±90◦ of the telescope boresight (in the plane shown in
Figure 3) was performed for a number of arrangements
of the source/receiver antennas. These arrangements in-
cluded moving the receiver horn to a few positions in the
focal plane and rotating the source and receiver horns for
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TABLE 7
Mean effective frequencies, beam sizes, main beam solid

angles, main beam forward gains and telescope
sensitivities for both the polarization (subscript P) and

total power (subscript T) assemblies.

νe FWHM ΩB Gm Γ
(GHz) (deg) (µsr) (dBi) (µK/Jy)

QP 43.0 0.455 74.3 52.3 237
QT 43.4 0.456 78.0 52.1 222
WP 94.4 0.195 13.6 59.6 269
WT 95.7 0.204 15.6 59.1 228

Fig. 7.— Results from the antenna range measurements. The top
measurements are the 40 GHz E-plane results for a horn located
in the top row, 20.46 mm above the central horn. The bottom
measurements are the 90 GHz H-plane results for a horn located
in the top row, 23.87 mm above the central horn. The gap in the
measurements from boresight angles of +1.5◦ to +8.5◦ is due to
mount-related elevation angle limitations. The two most prominent
far sidelobes are the triple reflection sidelobe and the SR spillover
lobe as indicated in each figure. The optical paths associated with
these lobes are shown in Figure 9. Top row horns, such as these,
are most susceptible to each of these lobes due to their location in
the focal plane.

both E- and H-plane cuts.
The results for one feed horn position for each of the

Q- and W-band arrays are shown in Figure 7. In each
case the feed horn position that was tested corresponds
to the top row of the respective platelet array, furthest
from the MR and directly above the central feed horn.
Cross polar measurements were not made on the antenna
range since they are made during routine calibrations.
The main lobe beamsizes compare well with initial the-
oretical predictions (Imbriale et al. 2011); however, the

near-in (i.e. within ±5◦ of the main lobe) sidelobe lev-
els do not. As described by Imbriale et al. (2011), this
is due to the reflector surface imperfections, which were
not included in the initial theoretical predictions. As
shown in Figure 18 from Imbriale et al. (2011), once the
measured reflector surface is incorporated in the theoret-
ical pattern predictions, the predicted envelope of near-in
sidelobes matches well with the observations. The sur-
face imperfections caused the near-in sidelobe levels to
increase by as much as 15 dB in some regions. The two
dominant far sidelobes are the SR spillover lobe and the
‘triple reflection’ lobe. The SR spillover lobe is broad
and arises from direct coupling into the feed horn. It is
located ∼ 70◦ from boresight as predicted by Imbriale
et al. (2011). The triple reflection lobe is due to an ad-
ditional reflection off the SR (as indicated in Figure 9)
and it is located ' 50◦ from boresight in the opposite
direction from the SR spillover lobe. This position also
matches the prediction shown in Figure 10 of Imbriale
et al. (2011). The amplitude of each lobe for the W-band
case is ' −61 dB, while they are both ' −57 dB for the
Q-band measurement. These amplitudes are both 5–7
dB above the uncorrected predictions of Imbriale et al.
(2011). As with the increased near-in sidelobe levels,
this increase in the far sidelobes can be attributed to the
reflector surface imperfections.

3.5.2. Source Measurements of Sidelobes
The performance of the UGS was assessed using the W-

band array in 2010 January. For these measurements, a
polarized, modulated 92 GHz oscillator was placed in the
near field of the telescope at a distance of approximately
15 m. The telescope was scanned over its entire azimuth
and elevation range at four different deck angles (0◦, 90◦,
−90◦, −180◦). The top and middle panels in Figure 8
show measurements before and after the installation of
the UGS, respectively. The main sidelobe feature at the
bottom of the top map corresponds to the line-of-sight
over the secondary. This feature is clearly removed by
the UGS. The remaining sidelobes were tracked down to
holes in the floor of the lower ground shield below the
SR. A third measurement taken after placing absorber
over these holes (bottom panel in Figure 8) verifies this
and displays the sidelobe performance in the final ground
shield configuration. The UGS was neither in place dur-
ing the full Q-band observing season nor during the first
third of the W-band observing season. Data with the
moon or sun in the sidelobes were excised during the Q-
band analysis as a result (QUIET Collaboration et al.
2011).

3.5.3. Sun Measurements of Sidelobes
Before the installation of the UGS, the sun is occa-

sionally detected in the sidelobes. This is particularly
apparent once the data are binned into maps in ‘tele-
scope boresight-centered’ coordinates. The cartesian ba-
sis of this coordinate system has î oriented along the feed
horn boresight, k̂ oriented along the telescope boresight,
ĵ = k̂ × î, and ŝ directed toward the sun. The corre-
sponding spherical coordinates of the sun are defined to
be θ = cos−1(ŝ · k̂), and φ = tan−1( ŝ·ĵ

ŝ·̂i ). Figure 9-(a)
shows the the optical path of these sidelobes before the
installation of the UGS along with the cartesian basis
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Fig. 8.— Sidelobe measurements for W-band module 40, located on the edge of the array), with the deck angle set at −180 and the
near-field source located at an azimuth of ' 20◦ and an elevation of ' −5◦. top: Measurements with only the lower ground shield. The
lobe seen at the bottom of the map is from spillover past the secondary. This lobe is removed after the installation of the UGS. middle:
Measurements with the lower ground shield and UGS installed. The lobe at the top is due to holes in the absorber from the ground shield
structure, and is present before the UGS was added as well, but its position has shifted slightly because the source was moved between
measurements. bottom: Results with the complete ground shield installed and with additional absorber placed over holes in the floor of
the lower ground shield. The color scale is the same between all three measurements and has been normalized to match the antenna range
measurements. The UGS reduces the far sidelobes by at least an additional 20 dB below the levels shown in Figure 7.

Fig. 9.— Sidelobe characterization using the sun. (a) The optical paths that give rise to the triple reflection and spillover sidelobes
before the installation of the UGS areshown as dashed lines. (b) The ‘telescope boresight-centered’ map of the sun before the installation
of the UGS for a Q-band feed horn in the top row, nearest to the vertical centerline. The sharp spike induced by the triple reflection is
seen at (θ, φ) ' (50◦, 180◦), while the large-area of sidelobe contamination just under the φ = 0◦ line is induced by the SR spillover. (c)
The ‘telescope boresight-centered’ map for a horn in a similar position in the W-band array before the UGS installation. (d) The same
map for the same W-band horn after the UGS installation.

of the ’telescope boresight-centered’ coordinates. Fig-
ure 9-(b) shows the ‘telescope boresight-centered’ map
for a feed horn on the top row of the Q-band array
that is closest to the vertical centerline of the platelet
array. The direction of the triple reflection far sidelobe
is similar among feed horns. However, the direction of
the spillover far sidelobe is different among feed horns
because it couples directly to the feed horns and not
through the reflectors. Therefore the far sidelobe re-
sponse is characterized for each feed horn separately. We
also measured the far sidelobes for W-band before and
after the UGS installation (Figure 9-(c, d)). Figure 9
(d) confirms that both far sidelobes are eliminated by
the UGS. The φ = 0◦ − phi = 180◦ line in Figure 9 cor-
responds to the principal plane measurement shown in
Figure 7, and both show the SR spillover lobe and triple
reflection lobe before the installation of the UGS. The
amplitudes of the two far sidelobes measured with the
sun are consistent with the ∼ −60 dB levels obtained

with the range measurements shown in Figure 7. The
addition of the UGS for the W-band data, in combina-
tion with azimuth filtering and data rejection used for
the Q-band data, makes the spurious polarization signal
due to sidelobes a negligible effect on the B-mode mea-
surements.

3.6. Leakage Beams
The leakage beams quantify both the Q and U diodes’

responses to an unpolarized source, as well as the leak-
age that can convert a sky Q into a measured U or a
sky U into a measured Q. In order to assess these var-
ious forms of leakage, a large number of observations
were performed of both Jupiter and Tau A. These pro-
duce beam maps that are subsequently decomposed into
their respective beam Mueller fields as given by O’Dea
et al. (2007). The beam Mueller fields are related to
the co- and cross-polar components of the dual, or-
thogonal polarizations supported by the feed system.
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Fig. 10.— The extracted Mueller fields are shown for a Q and U diode pair behind the central horn of the W-band array. An ' 0.4%
quadrupole term is evident in the mQI and mUI leakage beams, while no higher order structure is evident in the mQU or mUQ leakage
beams at the ' 0.1% level. As described in Section 3.6, the monopole contribution to the mQU and mUQ leakage beams can be absorbed
into the detector angle which is measured during the calibration procedure. Similar results for the Q-band system are given in Monsalve
(2010).

For a linearly polarized source with Stokes parame-
ters (Isrc, Qsrc, Usrc, Vsrc = 0), degree of linear polariza-
tion p =

√
Q2

src + U2
src/Isrc, and position angle γPA =

1
2 tan−1(−Usrc/Qsrc), the output voltage dQ of a Q diode2

as a function of instrumental flux density gain gQ and in-
strumental position angle ψ is given by

dQ = gQ · Isrc · {mQI + p ·mQQ · cos(2[γPA − ψ])
+ p ·mQU · sin(2[γPA − ψ])}, (5)

where mQI and mQU are the Mueller fields representing
the I-to-Q and U-to-Q leakage beams and mQQ is the
extracted Q polarization beam. Similarly, the output
voltage of a U diode is given by

dU = gU · Isrc · {mUI + p ·mUU · sin(2[γPA − ψ])
+ p ·mUQ · cos(2[γPA − ψ])}, (6)

where mUI and mUQ are the corresponding leakage
beams, and mUU is the U polarization beam. In each
of these expressions, the factor g is the product of the
receiver responsivity R and the telescope sensitivity Γ.
The instrumental position angle is given by ψ = η + φd

where η is the parallactic angle of the beam center and
φd is the deck angle.3 For a number of sources, Tau A

2 The diode nomenclature is described in Section 5.2.
3 For reference, when φd = 0◦ or φd = 180◦, the line connecting

the feed horn centers of the differential temperature assemblies is
parallel to the ground. In the event that the parallactic angle of
a given beam is similarly zero (so that the beam is observing the
local meridian), then the plane of the feed horn’s septum polarizer
is perpendicular to the local meridian, yielding an instrumental
position angle ψ = 0◦.

in particular, the parallactic angle coverage is not very
large, so beam maps at various deck angles are necessary
in order to vary the outputs of the Q and U detector
diodes. Daily beam maps of Jupiter and/or Tau A are
used to extract the various leakage beams as well as the
polarized beams. Figure 10 shows the results of this ex-
traction for a Q and U diode pair behind the central
W-band horn. A similar figure is shown in (Monsalve
2010) for the Q-band system.

The mQI and mUI Mueller fields are of particular im-
portance since they characterize the instrumental polar-
ization. Instrumental polarization can be generated by
any of the elements in the optical path including the re-
flectors, the curved cryostat window, the IR blocker, the
feed horns, the septum polarizers and the modules them-
selves. In the Appendix, specific expressions are derived
for these leakage terms for the modules and the septum
polarizers. These two elements are the primary cause of
the monopole leakage contribution to the mQI and mUI

Mueller fields. The median W-band monopole leakage is
0.25% and is lower than the Q-band monopole leakage.
As reported in QUIET Collaboration et al. (2011), the
Q-band monopole leakage is the largest systematic error
in the B-mode measurement at ` ∼ 100 where it begins
to dominate the constraint on r at levels of r < 0.1. A
naive estimate of the impact of this leakage would cause
it to dominate at a much higher level, however a com-
bination of sky rotation and frequent boresight rotation
suppresses this systematic by two orders of magnitude.
The cause of the Q-band monopole leakage is described
in more detail in section 5.1 .

The monopole leakage refers to the s00 term in
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Fig. 11.— These histograms show the number of W-band diodes that have a maximum absolute value of the product |sijfij | (denoted
Peakij on the x-axis) in a given percentile range for both the mQI and mUI leakage beams. The Hermite expansion term is also shown in
each panel. A median value of all detector diodes is provided in each histogram and indicated with a vertical line. Similar results for the
Q-band system are given in Monsalve (2010).

the Gauss-Hermite expansion of these leakage beams
bleak(x, y) (Monsalve 2010). Here and in Figure 10 the
coordinates (x = sin θ sinφ, y = sin θ cosφ) are ‘telescope
boresight-centered’ coordinates defined in Section 3.5.3.
The leakage beams can be expressed as

bleak(x, y) =
2∑
j=0

2∑
i=0

sij · fij(x, y), (7)

where sij are the fit coefficients and the normalized basis
functions fij(x, y) are

fij(x, y) =

(
1√

2i+ji!j!πσ2

)
e−

1
2σ2 [x2+y2]Hi

(x
σ

)
Hj

( y
σ

)
,

(8)
where σ is the gaussian width of the symmetrized beam
described in Section 3.4 and the Hi and Hj are Hermite
polynomials.

Higher order leakage terms, including dipole (s01 or
s10) and quadrupole leakages (s11 or (s20 − s02)/2), can
also arise due to the off-axis nature of the telescope and
the imperfectly matched E and H-plane feed horn pat-
terns. The full array drift scans of Jupiter are particu-
larly useful in measuring these quantities for every diode
in the W-band array. Histograms of the peak ampli-
tudes complete to i = j = 2 are shown in Figure 11 for
the W-band array. Similar results are provided for the
central pixel of the Q-band array in Monsalve (2010).
Additional terms in the expansion are also included, but
they are consistently less than 0.1%. Leakages above 1%

are quite rare and typical values are in the 0.2 − 0.4%
range. The W-band dipole and quadrupole leakages are
typically slightly higher than those in Q-band. The sys-
tematic effects that these leakage beams generate for
power spectrum estimation are provided for the Q-band
results (QUIET Collaboration et al. 2011), and similarly
they will be provided in the W-band analysis paper (in
preparation).

The mUQ and mQU Mueller fields measure the leakage
of the incident Q Stokes parameter into the measured
U Stokes parameter or the incident U Stokes parameter
into the measured Q Stokes parameter. Curved reflector
surfaces, imperfections in the septum polarizer, and im-
perfections in the phase switch are potential sources of
this leakage. These primarily give rise to monopole leak-
age and effectively rotate the instrumental position angle.
In the case that the ratios mQU

mQQ
and mUQ

mUU
are constant

over the extent of the beam, the mUQ and mQU Mueller
fields can be absorbed into the expressions for the two
diode outputs with the definition of detector angles ψQ

and ψU. The detector angles are defined by replacing the
last two terms in each of equations 5 and 6 with a single
term as follows:

p ·mQQ · cos(2[γPA − ψ − ψQ]) ≡
p ·mQQ · cos(2[γPA − ψ]) + p ·mQU · sin(2[γPA − ψ])

(9)

and
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p ·mUU · sin(2[γPA − ψ − ψU]) ≡
p ·mUU · sin(2[γPA − ψ]) + p ·mUQ · cos(2[γPA − ψ]),

(10)

respectively. A Hermite decomposition of the mQU and
mUQ Mueller fields shown in Figure 10 shows that they
are simply related by a multiplicative factor to the mQQ

and mUU fields. Thus they can be represented in terms
of single valued detector angles, ψQ and ψU and are not
a source of systematic error. An important feature of
the resulting detector angles is that they are separated
by nearly integer multiples of 45◦ for each of the four
diodes in a given module. This is shown to be the case
in Section 8.5.

4. CRYOSTATS

4.1. Cryostat Design
The Q-band and W-band receiver arrays each have

a dedicated cryostat (Figure 12). In each cryostat,
cryogenic temperatures are achieved with two Gifford-
McMahon dual-stage refrigerators. The first stage of the
refrigerators provide cooling power to a radiation shield,
maintained at ∼50 K (∼80 K) for the Q-band (W-band)
cryostat. The difference in shield temperature between
the W-band and Q-band instruments wasn’t anticipated
from the cryostat design, but ultimately did not greatly
impact the module temperatures. Infrared radiation is
reduced with 10 cm thick, 3 lb density styrofoam (Ta-
ble 8) attached to the top of the radiation shield. The
first stages of the refrigerators also provide a thermal
break for the electrical cables. The second stages of the
refrigerators provide cooling power for the feedhorn array
and the modules. The two stages are thermally isolated
by G-10 rings.

4.2. Cryostat Performance
The cryogenic performance of the Q-band array is con-

sistent with the design goals of 20 K module tempera-
tures and that we maintain a constant temperature dur-
ing a scan to within ±0.1 K. A temperature sensor lo-
cated on an edge module in the Q-band cryostat had a
mean temperature of 20.0 K with a standard deviation
of 0.3 K throughout the season and a deviation of 0.02 K

Fig. 12.— The W-band cryostat with the vacuum shell and
radiation shields removed.

within a scan.
For the W-band array, we expected the modules to be

slightly warmer than the Q-band modules due to addi-
tional loading contributions from the active components
and conduction through cabling from a factor of five more
modules. We found we ultimately had to regulate the W-
band modules warmer than we expected by ∼3 K, likely
as a result of both higher shield temperatures and a mi-
nor vacuum leak which caused us to vacuum pump the
cryostat a few times during the W-band season. A tem-
perature sensor placed directly on the central polarimeter
of the W-band array had a mean temperature of 27.4 K
with a standard deviation of 1.0 K throughout the sea-
son, and a mean variation within a scan of 0.12 K. For
both receiver arrays, both the variation of the module
temperatures within a scan and throughout the season
had a negligible impact on the responsivity (QUIET Col-
laboration et al. 2011).

4.3. The Cryostat Window
The vacuum windows for both the Q-band and W-

band cryostats are ∼ 56 cm in diameter, the largest vac-
uum window to date for any CMB experiment. The vac-
uum windows must be strong enough to withstand atmo-
spheric pressure, and also should maximize transmission
of signal with minimal instrumental polarization.

We chose a window material of ultra-high molecular
weight polyethylene (UHMW-PE) after stress-testing a
variety of window materials and thicknesses. The in-
dex of refraction was expected to be 1.52 (Lamb 1996).
To make a well-matched anti-reflection coating for the
UHMW-PE in the QUIET frequency bands, we coated
the window with expanded teflon, which has an index of
refraction of 1.2 (Benford et al. 2003). We adhered the
teflon to the UHMW-PE window by placing an interme-
diate layer of low-density polyethylene (LD-PE) between
the teflon and the UHMW-PE. We then heated the plas-
tics above the melting point of LD-PE while applying
pressure with a clamping apparatus in a vacuum cham-
ber, allowing us to avoid trapping air bubbles between
the material layers (the window material properties are
summarized in Table 8). By adding an anti-reflection
coating to the window, we expected the band-averaged
transmission to improve from 89.8% to 98.8% for the Q-
band array and from 91.1% to 98.3% for the W-band
array.

An anti-reflection coated sample for the W-band win-
dow was measured in a VNA. We fit the envelope of
the transmission and reflection response to obtain values
for the optical properties and material thicknesses. We
computed the expected contributions to the system noise
from loss using published loss tangent values (Lamb
1996): 3 K (4 K) for the Q-band (W-band) windows.
These values were confirmed by placing a second win-
dow over the main receiver window and measuring the
change in instrument noise.

The curvature of the window under vacuum pressure
could introduce cross-polarization by presenting a vari-
able material thickness to the incoming radiation. A
physical optics analysis of the 90 GHz window was per-
formed with the General Reflector Antenna Analysis 6

package to investigate the effect of the curved surface

6 http://www.ticra.com
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TABLE 8
Thicknesses of the window, anti-reflection coating
material and IR blocking styrofoam for the W- and
Q-band cryostat windows. Values for the index of

refraction for teflon and UHMW-PE come from the
best-fit values to VNA measurements at 90 GHz.

Material Index of Thickness (mm) Vendor

refraction Q-band W-band

UHMW-PE 1.52 9.52 6.35 McMaster-Carr

LD-PE 1.52 0.127 0.127 McMaster-Carr

Teflon 1.2 1.59 0.54 Inertech

Styrofoam – 101.6 101.6 Clark Foam

on the transmission properties of the window. For these
simulations we use a window curvature determined from
measurements of the deflection of the window under vac-
uum, ∼7.62 cm. With a curved window, the central feed-
horn has negligible instrumental polarization. The edge
pixel has 0.16% additional cross-polarization, where this
is defined as leakage from one linear polarization state
into the other linear polarization state. This -28 dB
cross-polarization is on the same order as expected cross-
polarization from the horns alone and would contribute
to the cross polarization coefficients mQU and mUQ given
in Section 3.6.

5. QUIET POLARIMETER AND
DIFFERENTIAL-TEMPERATURE ASSEMBLIES

QUIET uses HEMT-based amplifiers with phase sen-
sitive techniques, following the tradition of recent
polarization-sensitive experiments such as PIQUE and
CAPMAP (Barkats et al. 2005), COMPASS (Farese et al.
2004), WMAP (Jarosik et al. 2003a), DASI (Leitch et al.
2002), and CBI (Padin et al. 2002). Unlike those other
experiments, however, QUIET uses a miniaturized design
(Lawrence et al. 2004) suitable for large arrays.

The QUIET Q-band (W-band) array contains 19(90)
assemblies, where 17(84) are polarization-measuring as-
semblies. The remaining 2(6) measure the CMB temper-
ature anisostropy (differential-temperature assemblies)
and are described in Section 5.3. At the heart of these as-
semblies are the modules ( see Section 5.2), a highly inte-
grated package that replaces many waveguide-block com-
ponents with strip-line-coupled monolithic microwave in-
tegrated circuit (MMIC) devices containing HEMT’s.
The modules have a footprint of 2.5 cm×2.5 cm (W-
band) and 5 cm×5 cm (Q-band). Figure 5 shows the
W-band array assemblies.

5.1. Polarimeter Assemblies
Each QUIET polarimeter assembly consists of (i) a sep-

tum polarizer, (ii) a waveguide splitter, and (iii) a mod-
ule containing the highly integrated package of HEMT-
based MMIC devices (see Figure 5.1). The septum po-
larizer consists of a square waveguide with a septum (a
thin aluminum piece with a stepped profile) in the cen-
ter, which adds a phase lag to one of the propagating
modes (Bornemann & Labay 1995). Given an incident
electric field with linear orthogonal components Ex and
Ey, where the x and y axis orientations are defined by
the septum, the septum polarizer assembly sends a left-
circularly polarized component L = (Ex + iEy)/

√
2 to

one output port, and a right-circularly polarized com-
ponent R = (Ex − iEy)/

√
2 to the other output port.

Thus the septum’s spatial orientation is used to define

Fig. 13.— The W-band array polarimeter and differential-
temperature assemblies. This is the largest HEMT-based array
ever assembled to date.

the instrumental position angle. The output ports of
the septum polarizer are attached to a waveguide split-
ter which transitions from the narrow waveguide spacing
of the septum-polarizer component to the wider waveg-
uide separation of the module waveguide inputs. A more
thorough mathematical description of the septum polar-
izer is given in Appendix 11.3.

With a Vector Network Analyzer (VNA), we mea-
sure the scattering matrices of both the Q-band and
W-band septum polarizers, and derive the gain and the
total power-to-polarization (monopole) leakage terms.
Q-band VNA measurements of prototypes show an en-
hancement in the return loss near the low frequency end
of the module’s bandpass. Therefore, we introduce a
bandpass mismatch between the septum polarizer and
module to prevent oscillations in the module output. The
bandpass mismatch leads to an enhancement in the dif-
ferential loss between the Ex and Ey transmissions at
47 GHz, causing a total power-to-Stokes Q leakage of
∼1%, averaged over the module’s bandpass. This esti-
mate is consistent with leakage values derived from Tau
A measurements (Section 3.6). W-band VNA measure-
ments show no return loss enhancement, and therefore
we made no bandpass adjustments. The VNA measure-
ments predict a smaller leakage of ∼0.3%, so that it is
subdominant to leakage due to optics. These measure-
ments are consistent with monopole leakage values ob-
tained from on-sky calibrators (see Section 3.6 and fig-
ure 11). Note that since the optics leakage has a random
direction relative to the polarimeter assembly leakage,
the combined leakage averages to a smaller value and is
randomly distributed both in sign and amplitude.

5.2. Modules
The QUIET modules are used in the polarimeter and

differential-temperature assemblies (see Sections 5.1 and
5.3), functioning as pseudo-correlation receivers so that
the output is a product (rather than sum or difference)
of gain terms. While the modules employ a high speed
switching technique to reduce 1/f noise, they are an im-
provement on classical Dicke radiometers (Dicke 1946):
they do not have an active switch at the amplifier input,
and there is an additional improvement of

√
2 in sensivi-

tity since the modules continually measure the sky signal
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Fig. 14.— A W-band polarimeter assembly. The module is
more compact than previous generation correlators by an order of
magnitude.

(Mennella et al. 2003).
In a polarimeter assembly, the module receives as in-

puts the left (L) and right (R) circularly polarized com-
ponents of the incident radiation, and measures the
Stokes parameters Q, U and I, defined as (we also define
Stokes V for completeness):

I= |L|2 + |R|2
Q= 2 Re(L∗R)
U =−2 Im(L∗R)
V = |L|2 − |R|2.

(11)

where the ∗ denotes complex conjugation.
Figure 15(a) shows a schematic of the QUIET mod-

ule, in which L and R traverse separate amplification
“legs” (called legs A and B). A phase switch in each
leg allows the phase to be switched between 0◦(+1) and
180◦(−1)31. The outputs of the two amplification legs
are combined in a 180◦-degree hybrid coupler which,
for voltage inputs a and b, produces (a + b)/

√
2 and

(a−b)/√2 at its outputs. The hybrid coupler outputs are
split, with half of each output power going to detector
diodes D1 and D4, respectively. The other halves of the
output powers are sent to a 90◦ coupler which, for volt-
age inputs a and b, produces (a+ ib)/

√
2 and (a− ib)/√2

at its outputs. The outputs of this 90◦ coupler are each
detected in diodes D2 and D3, respectively. The detec-
tor diodes are operated in the square-law regime, and
so their output voltages are proportional to the squared
input magnitudes of the electric fields.

Table 9 shows the idealized detector diode outputs for
the two states of leg B, with the leg A state held fixed.

31 The phase switch acts uniformly across the bandwidth of the
module.

(a)
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Components
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Fig. 15.— a: Signal processing schematic for an ideal QUIET
module in a polarimeter assembly. The diode raw signals are given
for the two (±1) leg B states, and for the leg A state fixed (+1).
For simplicity, details of the 3 LNAs and bandpass filters are not
shown. b: Internal components of a 5 cm×5 cm Q-band module.

The diode outputs are averaged and demodulated by ad-
ditional warm electronics (see Section 6). Given a diode
output of I±Q(U), the averaging and demodulation op-
erations return I and Q(U) respectively.32 We can self-
consistently generate the Stokes parameters with units of
temperature as follows (Staggs et al. 2003). Let Tx (Ty)
be the physical temperature of a black body that emits
the observed value of < E2

x > (< E2
y >). The Stokes

parameters become:

I =
1
2
· (Tx + Ty)

Q =
1
2
· (Tx − Ty) (12)

For completeness, the voltage VQ1 appearing at the Q1

diode would measure:

VQ1 = g · (1
2

(Tx + Ty)± 1
2

(Tx − Ty)) (13)

where ± represent the states of leg B, and g is the re-
sponsivity constant extracted using calibration tools and
procedures described in Sections 7 and 8.

In practice, the phase of leg B changes at 4 kHz, so that
the demodulated Q and U outputs do not suffer from 1/f
noise, which is due primarily to the LNAs. However the
phase switches do not reverse the sign of I, therefore the
I output suffers from significant 1/f noise and so is not
used to measure the temperature anisotropy. The choice
of circularly-polarized inputs thus allows us to measure
both Stokes Q and U simultaneously which gives an ad-

32 When referring to diodes D1, D2, D3, and D4, we shall use
the naming convention Q1, U1, U2, and Q2 diodes respectively.
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vantage in sensitivity.
The amplifier gains and transmission coefficients are

represented by the proportionality symbols in Table 9.
In practice, the transmission through leg B is not exactly
identical between the two leg B states, leading to addi-
tional free parameters needed to characterize the module.
If the leg B transmission differences are not accounted
for, they lead to instrumental (i.e. false) polarization.
This is resolved by modulating the phase of leg A at
50 Hz during data taking, and performing the “double
demodulation” procedure on the offline data. Imperfec-
tions in the optics and the septum polarizer introduce
additional offsets and terms proportional to I. These
effects are discussed in Appendix 11.2 and 11.3.

In practice, the signal pseudo-correlation is imple-
mented in a single small package as shown in Figure
15(b) (Kangaslahti et al. 2006; Cleary 2010). The low
noise amplifiers (LNAs), phase switches and hybrid cou-
plers are all produced using the same Indium-Phosphide
(InP) fabrication process. Three LNAs, each with gains
∼ 25 dB, are used in each of the two legs. When the in-
put amplifiers are packaged in individual amplifier blocks
and cryogenically cooled to ∼ 20K, they exhibit noise
temperatures of about 18 K (50–80 K) for the Q-band
(W-band). The phase switches operate by sending the
signal down one of two paths within the phase switch
circuit, one of which has an added length of λ

2 (ie. 180◦

shift). Two InP PiN (p-doped, intrinsic-semiconductor,
n-doped) diodes control which path the signal takes.
The signals go through band-defining passive filters made
from AlN substrates, and then detected by commercially-
available Schottky detector diodes downstream of the hy-
brid couplers. The amplifers and phase switches are fre-
quency dependent, and hence unique to each array. The
detector diodes are capable of functioning at both 40
GHz and 90 Ghz, and so are identical between the two
arrays.

The module components are packaged into clamshell-
style brass housings, precision-machined for accurate
component placement and signal routing. Each housing
has feedthrough pins connecting the module components
via strip-line and wire ribbon bonds for bias and diode
readout. Miniature absorbers and an epoxy gasket be-
tween the two halves of the clamshell are used to isolate
unwanted cross talk between the RF and DC compo-
nents. All Q-band modules and roughly 30% of W-band
modules are assembled by hand. For the remaining W-
band modules, the components and substrates are auto-
matically placed in the housings by a commercial con-

TABLE 9
Raw, averaged, and demodulated detector diode outputs

for an ideal QUIET module in a polarimeter assembly.
Results are shown for the two states of leg B, with the

leg A state held fixed.

Diode Raw Output Average Demodulated

D1 ∝ 1
4 (I ±Q) ∝ 1

4I ∝ 1
2Q

D2 ∝ 1
4 (I ∓ U) ∝ 1

4I ∝ − 1
2U

D3 ∝ 1
4 (I ± U) ∝ 1

4I ∝ 1
2U

D4 ∝ 1
4 (I ∓Q) ∝ 1

4I ∝ − 1
2Q

tractor using a pick-and-place machine; the wire bond-
ing, absorber and epoxy gasket are then finished by hand.

5.3. Differential-Temperature Assemblies
The differential-temperature assemblies are grouped

into pairs of assemblies, with waveguide components that
mix two neighboring horn signals into two neighboring
modules. Figures 16(a) and 16(b) show the schematic
and implementation of these assemblies. An orthomode
transducer (OMT) located after feedhorn “A” outputs
the linear polarizations EAx and EAy. One of these
polarizations, EAy, enters a waveguide 180◦ coupler (a
“magic-tee”) and is combined with EBx from the adja-
cent feedhorn. The magic-tee outputs are coupled to a
module’s inputs. The OMTs are reused from CAPMAP
(Barkats et al. 2005) while the waveguide routing and
magic-tees are custom made by Custom Microwave. Note
that the differential-temperature assembly design resem-
bles that of WMAP (Jarosik et al. 2003b), with the only
significant difference being in the implementation of the
LNAs. Where as WMAP uses a conservative design of
discrete HEMT LNAs operating at both cold and warm
temperatures, advances in MMIC HEMT LNAs allows
for QUIET’s more compact design.

For an ideal differential-temperature assembly, the de-
modulated Q diode (ie. D1 and D4) outputs mea-
sure E2

Ax − E2
By, while their counterpart in the adjacent

differential-temperature assembly measure E2
Ay − E2

Bx.
The difference of demodulated Q diode outputs from ad-
jacent differential-temperature assemblies measure the
beam-differenced total power (E2

Ax + E2
Ay) − (E2

Bx +
E2

By) = IA − IB (see Table 10). The demodulated U
diode outputs (ie. D2 and D3) is zero for an ideal assem-
bly. However, unequal path lengths (φ) in the two legs
of a module move some of the temperature difference
signal from the Q diodes to the U diodes. The Q(U)
diode signals vary as cos(φ)(sin(φ)). For the differential-
temperature assemblies, φ is ∼ 10 − 20 degrees which
moves ∼15-30% of the signal to the U diodes.

Finally, we note that the sum of demodulated Q diode
outputs from adjacent modules is QA + QB , where Q
is the Stokes Q parameter seen by the respective horns.
Thus one can in principle extract polarization informa-
tion from the differential-temperature assemblies. How-
ever, as these assemblies form a small fraction of the
array, the sensitivity gain is marginal and so this option
was not explored further in the analyses.

6. ELECTRONICS

TABLE 10
Outputs of an ideal differential-temperature assembly at
detector diodes D1 and D4 corresponding to a leg B state

of +1(−1), with leg A fixed at +1. Also shown is the
difference of the demodulated D1 signals from two

modules.

Mod 1 Mod 2

D1 ∝ E2
Ay(E2

Bx) ∝ E2
By(E2

Ax)

D4 ∝ E2
Bx(E2

Ay) ∝ E2
Ax(E2

By)

demod(D1,Mod1 )−
demod(D1,Mod2 ) (E2

Ax + E2
Ay)− (E2

Bx + E2
By)
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(a)

(b)

Fig. 16.— a: Schematic of the waveguide coupling for the hybrid-
Tee assembly. An Orthomode Transducer (OMT) located after
feedhorn “A” outputs the linear polarizations, EAx and EAy. One
of these polarizations, EAy, enters a waveguide 180◦ hybrid coupler
(a “magic-tee”) and is combined with the orthogonal polarization
from an adjacent feedhorn, EBx. Proportionality constants such as
factors of 1/

√
2 have been omitted for simplicity. b: Implementa-

tion of a W-band differential-temperature assembly (modules not
shown).

Downstream of the modules are electronics for detector
biasing, timing, preamplification, digitization, and data
collection. These functions are accomplished by four sys-
tems: (1) Passive Interfaces, (2) Bias, (3) Readout, and
(4) Data Management. The Passive Interfaces system
(Section 6.1) creates an interface between the modules,
the Bias system, and the Readout system. The Bias
system (Section 6.2) provides the necessary bias to each
module active’s components. The Readout system (Sec-
tion 6.3) amplifies and digitizes the module outputs. The
Data Management system (Section 6.4) commands the
other systems and records the data. The Bias and Read-
out systems are housed in a weather-proof temperature-
controlled enclosure to protect them from the harsh con-
ditions of the Atacama Desert. The enclosure also serves
as a Faraday cage to minimize radio-frequency interfer-

ence. Further description of these electronics can be
found in Bogdan et al. (2007).

Fig. 17.— Major components of the electronics. Boxes outline
the four main systems. Arrows indicate the flow of bias commands
and data signals.

6.1. Passive Interfaces
The electrical connection to, and protection of,

the modules is provided by Module Assembly Boards
(MAB). Each MAB is a printed circuit board with pin
sockets for seven modules. Voltage clamps and RC low-
pass filters protect the sensitive components inside the
module from damage. The Q-band(W-band) modules
require 28(23) pins for grounding, biasing active compo-
nents, and measuring the detector diode signals. All of
these electrical connections are routed outside the cryo-
stat. After the MAB protection circuitry, these signals
travel on high density flexible printed circuits (FPC),
which bring them out of the cryostat through Stycast-
epoxy–filled hermetic seals. An additional layer of elec-
tronic protection circuitry is provided by the Array inter-
face boards (AIB), which also adapt the FPC signals to
board-edge connectors and route to the Bias and Read-
out systems.

6.2. Bias System
All biasing is accomplished by custom circuit boards.

The amplifier bias boards provide voltage and current
to power the amplifiers in the modules. Each of these
bias signals is controlled by a 10-bit digital-to-analog
converter (DAC), which allows the biases to be tuned
for optimal performance of each amplifier. Phase switch
boards provide control currents to the PiN diodes in the
phase switches. The control current is switched by the
board at 4 kHz for one phase switch and 50 Hz for the
other phase switch, generating the modulation described
in Section 5.2. The data taken during the switch transi-
tion time are discarded in the Readout system. A house-
keeping board monitors the bias signals at ≈ 1 Hz for
each item being monitored. The housekeeping board
multiplexes between these items, switching only during
the phase switch transitions when data will be discarded.

The Q-band amplifier bias boards are designed to op-
erate at 25◦C so the enclosure is thermally regulated at
that temperature. The W-Band amplifier bias boards use
a different design that is much less temperature sensitive.
Therefore, the enclosure regulation temperature for the
W-band is varied between 35◦C and 40◦C depending on
the season to reduce the power needed for regulation. For



The Q/U Imaging ExperimenT 17

both the Q-band and W-band observing seasons, the en-
closure temperature remained within the regulation set-
point for ≈ 90% of the time. For the Q-band system,
the excursions will primarily affect the drain-current bias
supplied by the amplifier bias boards, which changes the
detector responsivity by ≈ 2%/◦C. This effect is taken
into account with an enclosure-temperature dependent
responsivity model (QUIET Collaboration et al. (2011)).

6.3. Readout System
The Readout system first amplifies each module’s de-

tector diode output by ≈ 130 in order to match the volt-
age range of the digitizers. The noise of this warm ampli-
fier circuit does not contribute significantly to the total
noise. This is determined in situ at the site by selectively
turning off the LNA’s in the module and seeing that the
total noise decreased by roughly two orders of magnitude.
For the W-band array, the amplifier noise contributes
less than 2% to the total noise in the quadrature sum.
The amplifier chain also low-pass filters the signal at
≈ 160 kHz to prevent aliasing in digitization. Each detec-
tor diode output is digitized by a separate 18-bit Analog
Devices AD7674 (Analog-Digital Converter) ADC with
4V dynamic range at a rate of 800 kHz. Each ADC Board
has a field-programmable gate array (FPGA), which ac-
cumulates the samples from the 32 ADCs on that Board.
The FPGA on one ADC Board, designated the “Mas-
ter ADC Board,” generates the 4 kHz and 50 Hz signals
used by the Bias system to modulate the phase switch
control current. This signal is also distributed to all ADC
Boards, and the FPGA on each ADC Board uses it to
demodulate the detector diode data synchronously with
the phase switch modulation.

Figure 18 summarizes the organization of data per-
formed by the FPGA. The FPGA organizes the 800 kHz
of detector diode data into continuous 10 msec blocks
(i.e. 100 Hz time streams), itself organized into con-
tinuous 125 µsec blocks. These 10 msec blocks contain
an equal sampling of both 4 kHz clock states. In the
“TP” stream, the 800 kHz data within a 10 msec block
are averaged, regardless of the 4 kHz clock state. This
stream is sensitive to Stokes I and is used for calibra-
tion and monitoring33. In the “demodulated” stream,
data within a 125 µsec block have the same 4 kHz phase
state, and are averaged. Averaged data from sequen-
tial 125 µsec blocks are differenced, thus forming the
polarization-sensitive data stream. Offline, two adjacent
10 msec blocks in the demodulated stream are differenced
to form the “double-demodulated” (50 Hz) stream. The
W-band data contains an additional specially demodu-
lated 100 Hz stream, called the “quadrature stream”.
Unlike the usual demodulated stream, data within a 125
µsec block populate equally both 4 kHz phase states,
and are averaged. When these averaged data are dif-
ferenced, the result has the same noise as demodulated
data but has no signal. The quadrature stream are used
to monitor potential contamination and to understand
the detector noise properties.

We noted in the previous section that data was masked
at the phase switch transition. Masking 14% of the sam-

33 However this stream does not have the benefit of the 1/f
noise reduction, and so is not used to compute the temperature
anisotropy spectrum.

Fig. 18.— Organization of 800 kHz data to form the demodulated
and quadrature 100 Hz streams. The blue and yellow lines show
detector diode data for the two 4 kHz phase states. Levels are
exaggerated for clarity.

ples around the transition was found to be adequate to
remove contamination in the data stream.

The ADC Boards have a small non-linearity in their re-
sponse. At intervals of 1024 counts, the ADC output has
a jump discontinuity between 1 and 40 counts, roughly
affecting 14% of the data. This jump is shown schemati-
cally in Figure 19. When the 800 kHz data stream value
falls at a discontinuity, the jump in the output signal
will trickle into the 100 Hz stream. We correct for this
non-linearity in 100 Hz stream. The correction is statis-
tical in nature, based on the width of the 800 kHz noise
and its proximity to the discontinuity (Bischoff 2010b).
This nonlinearity, if uncorrected, causes a variation of
responsivity during a CES and systematic effect similar
to the leakage of temperature to polarization. For the
Q-band, the correction reduces the ADC nonlinearity to
contribute at most 3% to the leakage bias systematic, and
at most 50% to the CES responsitivity systematic. For
the W-band, the residual ADC nonlinearity adds 40%
in quadrature to the leakage bias systematic. The effect
from CES responsivity is < 1%, negligible compared to
other errors in the gain model. These affect r at a level
below 0.01 for the W-band.

The Readout system ensures that the housekeeping
data and 100 Hz data from the detectors are synchro-
nized to each other and to the mount motion encoder
readout. Synchronization is achieved by distributing the
same GPS-derived IRIG-B34 time code to both the re-
ceiver and mount electronics. In the Readout system, the
time code is decoded by a Symmetricom TTM635VME-
OCXO timing board. One-Hz and 10-MHz clock signals,
locked to the IRIG-B time code, synchronize the read-
out of all ADC Boards. The timing board provides the
GPS-derived time to the Data Management system so
that each datum is assigned a time stamp.

6.4. Data Management
The Data Management system sends commands to the

Bias system to prepare for observation, acquires the data
from the Readout system, writes them to disk, and cre-
ates summary plots of the detector diode signals and
housekeeping data for display in real time. The com-
plete data are written to disk and DVD’s in the control
room at the observation site at a rate of ' 8 GB day−1

for the Q-band array. W-band array data are written to
blu-ray optical discs at the rate of ' 35 GB day−1. A
subset of ≈ 10% of the data are transferred by internet
every day for more rapid analysis and monitoring.

34 Inter-range Instrumentation Group Mod B.
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Fig. 19.— Non-linear response of the ADC plotted in arbitrary
units. The horizontal axis shows the ADC input near the discon-
tinuity. The red and blue distributions show the fluctuations of
800 kHz samples in two different 4 kHz phase switch states. When
these distributions cross the ADC response discontinuity, the out-
put distributions are split at the discontinuity. When the red and
blue states are differenced to create demodulated data, the split
caused by the discontinuity is added to the result.

7. ARTIFICIAL CALIBRATORS

We used both astronomical and artificial calibrators
to characterize the instrument. Astronomical calibrators
are described in Section 3.4 and Section 8. In this section,
we focus on the artificial calibrators we developed for
QUIET for use in the laboratory and at the observation
site.

7.1. The Optimizer
We measured the polarized response of the receiver in

the laboratory with the ‘optimizer,’ a reflective plate and
cryogenic load that rotate around the bore sight of the
cryostat (Figure 20).

Fig. 20.— The optimizer consists of a reflective metal plate and
a cryogenic load, which co-rotate around the cryostat. We set the
plate angle β to be 45◦. The reflected signal is polarized (given by
equation 14) and the polarized component modulates at twice the
angular frequency of the rotating apparatus.

The plate is oriented at angle β from the plane of the

feedhorns and reflects light from the cryogenic load into
the window of the cryostat with a Stokes Q in tempera-
ture units (Barkats et al. 2005).

Q=
1
2
· 4πδ
λ

(cosβ − secβ)(Tplate − Tload) sin(2αt),

δ=
√

ρ

µ0πν
, (14)

where ρ is the bulk resistivity of the metal plate, ν and
λ correspond to the center frequency and wavelength of
the detector bandpass, ε0 is the vacuum dielectric con-
stant, t is time, and Tplate and Tload are the temperature
of the plate and cryogenic load, respectively. δ is the skin
depth for the frequency ν, and µ0 is the permiability of
free space. The Stokes Q is the difference in tempera-
tures between radiation normal and parallel to the plane
of incidence, and scaled by 1

2 to maintain consistency
as shown in Equation 12. This apparatus rotates at a
angular speed α around the boresight of the cryostat so
that the resulting polarized signal will rotate between
the Stokes Q and U at a angular speed of 2α. Polariza-
tion signals that do not rotate with the system (such as
thermal emission from objects in the laboratory) will be
detected at a rate of α, and so can be removed.

The predicted polarized emission from Equation 14 and
the measured voltage on the detector diodes allow us
to calculate the polarized responsivity for polarimeters
whose beam primarily samples the reflected cryogenic
load. We used various plate materials (aluminum, stain-
less steel, and galvanized steel) and two thermal loads
(liquid nitrogen and liquid oxygen) to obtain multiple
estimates of the polarized responsivity. The loads are
too small to fill the entire array beam, so only the mea-
surements from the central polarimeter (Q-band) or in-
ner two rings (W-band) were used. The optimizer was
used to verify that the responsivities derived from un-
polarized measurements with cryogenic loads were not
substantially different from the polarized responsivities,
and hence that the projections of instrument sensitivity
(which were made from unpolarized measurements) were
valid for the Q-band array. For the W-band array, we
used the optimizer to select functioning modules for the
final array configuration.

7.2. The Wire Grid Polarizer
We built a ‘sparse wire grid’ (Tajima et al. 2012): a

plane of parallel wires held in a large circular frame with
the same diameter as the cryostat window. For the po-
larization parallel to the grid wires, a fraction of the rays
that would ordinarily pass through the telescope to the
cold sky are instead scattered to large angles, mostly
terminating on the warm ground shield. The grid was
placed as close to the cryostat aperture as possible to
minimize interference with the telescope optics and to
ensure that it covered the field-of-view of each detector
(Figure 21).

With this geometry, a ∼2 K polarized signal is directed
parallel to the length of the wire. The circular frame is
rotateable via a small motor, allowing us to modulate
the injected polarized signal at a constant frequency. We
used the wire grid for calibration measurements in the
laboratory and three times during the observing season:
at the end of the Q-band observing season and at the
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Fig. 21.— Sparse wire grid array mounted on the W-band cryo-
stat (right), and the fine wire detail (left).

beginning and end of the W-band observations.
An example of the data taken with the rotating grid is

shown in Figure 22. In the ideal case in which the inten-
sity of the reflected radiation is isotropically uniform over
the array, the polarized signal from each detector P (θ)
would exhibit a perfect sinusoidal dependence at twice
the frequency of the sparse wire grid angle θ. There is an
additional component in the measured polarization sig-
nal as the grid rotates around the boresight which comes
from the rays terminating at different temperatures in
the non-uniform ground screen. This variation appears
in both the polarized data stream P as well as the total
power data stream I as a function of θ, and so this com-
ponent can be measured in the total power data stream
and removed from the demodulated stream. For each
detector, we fit the data to the form

P (θ) =G · I(θ) cos(2(θ − γ))− P0, (15)

to extract G (the polarized gain), γ (the detector angle
as defined within the wire grid system), P0 (an offset
induced by leakage) from the polarized data P (θ) and
the total power data I(θ). Since the wire grid orienta-
tion with respect to the sky coordinates is not measured,
the angle γ for each detector provides only the relative
direction of detector angles. Similarly, we use only the
relative values of G (i.e. gain ratios amongst the detec-
tors), which agree with gain ratios derived from Tau A
observations.

Fig. 22.— Polarization response of a detector as a function of
time, where the wiregrid was rotating at ∼8 RPM. A sinusoidal
response is clearly observed at twice the rotation frequency.

8. RECEIVER CHARACTERIZATION AND CALIBRATION

Each receiver diode (Table 11) is characterized by its
bandpass, noise level, polarization angle, and total power
and polarized responsivities. These quantities were mea-

sured for the receiver arrays in the laboratory prior to
deployment, and at the site using astronomical calibra-
tors, sky dip measurements, and polarizing grid measure-
ments.

In this section, we discuss our methods of module bias
optimization (Section 8.1) and module leakage remedia-
tion (Section 8.2). We include discussion of our methods
for characterizing module bandpasses (Section 8.3), re-
sponsivites (Section 8.4), detector angles (Section 8.5),
noise measurements (Sections 8.6 and 8.7), and sensitiv-
ity (Section 8.8).

TABLE 11
Detector yield for the Q-band and W-band arrays.

Band Q W

Number of modules 19 90

Polarization modules 17 84

Polarization diodes 68 336

Working polarization diodes (Stokes Q) 31 153

Working polarization diodes (Stokes U) 31 155

Total power modules 2 6

TT diodes (Stokes Q only) 4 12

Working TT diodes (Stokes Q only) 4 12

8.1. Detector Biasing and Optimization
The amplifiers were biased manually for gain balance

between the module legs and for adequate signal level
for the Q-band array at the beginning of the observing
season. This was performed for each module using a
room temperature black-body load in front of the cryo-
stat. The phase swiches are turned on separately, such
that the signal can only propagate through the module
leg with the phase switch on. The amplifers can then be
biased one leg at a time such that the first stage ampli-
fier drain current is in the range 0-5 mA, the second stage
drain current is in the range 5-15 mA, and the third stage
amplifiers are in the range 15-30 mA, and that the signal
measured by the detector diodes is ∼5 mV. We then re-
peat turning on only the phase switch for the other leg,
and adjust again to obtain a signal difference between
the two legs of 0.6 mV. This biasing scheme reduces the
current through the first stage amplifier to ∼30% that
of its maximum value to keep its noise contribution low.
The bias values for the phase switches were chosen to
equalize the signal measured on the two separate legs
of the module. These bias settings were found once at
the beginning of the season, and kept fixed during the
observing season.

For the W-band array, biasing the modules by hand
was not feasible due to the larger number of modules
compared to the Q-band array, and so an automatic
method was developed. A polarized signal was injected
during module biasing by continually rotating the sparse
wire grid, generating a sinusoidal polarization signal.
Amplifier bias settings were found by maximizing the
amplitude of the sinusoid relative to the time-stream
noise. The bias settings were sampled via a computer-
based downhill simplex algorithm and optimum values
were found for all modules within few hours. These set-
tings were also kept fixed during the W-band observing
season. Because the settings were chosen for signal-to-
noise, balance between the legs was not prioritized.
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8.2. Module Leakage Remediation
One source of leakage from total power into polariza-

tion from the module stems from differential power trans-
mission between the two phase switch states within a
given leg (Section 11). We found that double demod-
ulating (described in Section 5.2) typically reduces the
root-mean-square of leakage from 0.8% to 0.4% for the
W-band modules (Figure 23). The improvement was
smaller for the Q-band array, < 0.1%, likely because it
was dominated by other sources of leakage (Section ??)
and because the phase switches were balanced during
bias optimization.

Fig. 23.— A histogram of diode leakage values between total
power and polarization channels during a large angle sky dip for
the W-band array before and after double demodulation. Double
demodulating reduces the total power leakage by a factor of ∼2 for
the W-band array.

8.3. Bandpasses
Bandpasses were measured for the Q-band array for

each diode in the laboratory during the course of array
testing and in an end-of-season calibration measurement
at the site. The laboratory measurement was performed
by injecting a polarized carrier-wave signal from a signal
generator with a standard-gain horn over a 35–50 GHz
range. The signal was injected into the receiver array
through the cryostat window without additional imag-
ing optics, with the horn approximately 3 m away from
the window. Sweeps were performed at least eight times.
The average bandwidth and central frequency of the po-
larization modules are given in Table 12. The statistical
errors on this measurement are obtained by finding the
standard deviation between the eight measurements for
a given module, and then averaging that standard de-
viation for all modules. The systematic error is half of
the average of the largest difference between the eight
measurements for each module.

Bandpasses were measured at the site for the Q-band
array by reflecting the swept signal from a small (∼1 cm2)
plate into the primary mirror. While measurements per-
formed in the laboratory and at the site are consistent
with each other, the variation in bandpass shape between
the two days of data taking at the site showed that the
systematic errors were larger in the experimental setup

at the site, so we used laboratory measurements where
available. There was some concern that because the am-
plifier bias settings were different between the laboratory
and the site measurements, the laboratory measurements
may not be a good enough proxy for the bandpasses dur-
ing CMB and calibration observations at the site. Using
data taken in the laboratory with different amplifier bias
settings, we investigated the relationship between am-
plifier biasing and the central frequency and bandwidth,
and found no relationship between the two. We conclude
that changes in amplifier bias over the range of interest
do not have a significant effect on the bandpasses.

Bandpasses were measured at the site for the W-band
array at the end of the observing season and the central
frequency and bandwidth are also given in Table 12. A
standard-gain horn was mounted beside the secondary
mirror, so it could illuminate the cryostat window from
∼1.5 m away. The signal generator was swept over 72–
120 GHz, while the phase switches were held constant
(no switching). In this configuration we can send the
signal down each module leg separately. The responses at
each frequency bin for each module leg were combined to
emulate the power combinations occurring in the module:

Ppol = PAPBcos(2(φ− γ)), (16)
(17)

where PA and PB are the measured bandpasses for the
signal travelling through module legs A and B, respec-
tively, φ is the assumed detector angle relative to the
horn (for example, a Q diode might have φ = 90◦ and a
U diode might have φ = 45◦), and γ is the horn angle.
Thus with the horn oriented at γ = 90◦, if the detec-
tor angle is aligned such that the Q diode has φ = 90◦,
the polarized bandpass is maximal on the Q diodes, and
minimal on the U diodes of the module. This reconstruc-
tion is straightforward for the total power bandpass, but
requires a well motivated assumption for the angle be-
tween the horn and the detector axis, which we took
as φ = 90◦ for the Q diodes. Systematic errors have
two main sources: the accuracy with which we can de-
tect the spike used to indicate the beginning of a sweep,
and from reconstructing the bandpass for both module
legs biased from data in which only one leg is biased.
The first was computed by noting that the timing was
accurate to 1.5 ms, which corresponded to 0.7 GHz dur-
ing the sweep measurement. The second was computed
by comparing the difference between measurements per-
formed with both legs biased and the reconstruction from
single-leg bandpasses from the total power stream. Be-
cause the total power stream does not have a dependence
on detector angle φ, the two should be identical and the
difference represents the systematic error in the measure-
ment. The systematic error was found to be 0.3 GHz for
central frequency and 0.9 GHz for the bandwidth.

Typical bandpasses for the Q-band and W-band arrays
are shown with the spectrum of the atmosphere in Fig-
ure 2. Central frequencies and bandwidths are computed
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from discrete frequency steps as

Central frequency ≡
P
i
IiνiP
i
Ii

(18)

Bandwidth≡
[
P
i
Ii]

2∆νP
i
I2i

, (19)

where Ii is the measured intensity from a detector diode
for each frequency step, νi is the corresponding fre-
quency, and ∆ν is the frequency step of the signal gen-
erator (100 MHz).

Although the bandwidths and central frequencies in
Table 12 are only given for the polarization modules, the
values for the differential-temperature modules were con-
sistent within the statistical accuracy of the swept source
measurements. While we designed the septum-polarizers
and differential-temperature assemblies to match the
module bandpass, the consistency between the two was
not necessarily expected both because the bandwidth of
the septum polarizer is slightly narrower than that of the
differential-temperature assemblies, and because the sep-
tum polarizer can impart a frequency dependent detector
angle.

8.4. Responsivities
We characterize the responsivities for the differential-

temperature modules and the polarization modules sep-
arately with different calibration sources. Responsivities
for the differential-temperature modules are computed
from calibration observations of Jupiter, RCW38, and
Venus, one of which was observed ∼once per week for
the Q-band receiver, and once a day for the W-band
receiver. The average responsivities for the differential-
temperature modules was 2.2 mV/K for the Q-band ar-
ray and 2.3 mV/K for the W-band array.

We found the absolute polarimeter responsivity for
the Q-band array central horn from Tau A measure-
ments performed every two days. Relative responsiv-
ity values among the polarization modules were found
from observations of the Moon (performed once per
week). Sky dip measurements (elevation nods of ∼ 6◦
for ‘normal’ sky dips, and ∼ 40◦ for ‘large’ sky dips)
are also used to obtain relative total power responsivities
of both the differential-temperature and polarized mod-
ules before each CES for the Q-band array (”flat field-
ing”). These frequent (once every ∼1.5 hours) respon-
sivity measurements provide relative responsivity track-
ing for the differential-temperature and polarized mod-
ules on short time-scales. These relative responsivities
were checked with an end-of-season wire-grid measure-
ment and measurements of Tau A with off-center mod-
ules.

For the W-band array, the Moon is too bright for rel-
ative responsivity measurements, so we used measure-
ments from the wire-grid and measurements of Tau A
from off-center modules. The average responsivity for
the polarized modules was 2.3 mV/K for the Q-band ar-
ray and 3.1 mV/K for the W-band array. These respon-
sivities are in terms of antenna temperature and include
the gain factor of 130 from the preamplifier boards (Sec-
tion 6.3).

The responsivity depends on the amplifier bias set-
tings. The bias values for the Q-band array were found

to be dependent on the bias board temperature (typical
values are 2% of the average responsivity per K), which
was the motivation for thermally regulating the electron-
ics enclosure to 25 C within 1 C. The final responsivity
model included a linear term for this temperature de-
pendence, and it was found to be a negligible system-
atic for scientific analysis (QUIET Collaboration et al.
2011). The bias circuit was upgraded in the W-band ar-
ray, rendering the temperature dependence of the boards
negligible.

One common concern when using amplifiers is sig-
nal compression: an input-dependent responsivity where
the responsivity is greatly reduced at high input pow-
ers. Compression is typically manifested as different re-
sponsivity values for different load temperatures, and has
important consequences when using responsivities from
calibration sources which are all usually much warmer
than the CMB itself (for example, the Moon is ∼223 K,
(Ulich et al. 1973)) and from extrapolating total power
responsivities to polarization responsivities. For the Q-
band array, responsivity measurements in the laboratory
and at the site with different calibration sources were all
consistent with each other, confirming that the modules
were not operating in a compressed regime. Laboratory
responsivity studies of the W-band modules using liquid
nitrogen as a cold load show some evidence for compres-
sion. In the field, the W-band modules exhibited com-
pression during measurements of the Moon. The emis-
sion from the ∼ 1◦ moon varies across its face (Ulich
et al. 1973) and we found that the polarized responsivi-
ties varied between the brightest and darkest portions of
its face by 20% (worst case 50% ).

Compression affects the polarized signal and the total
power signal differently (Section 11.1). Since the sky dips
measure total power responsivity only, this complicates
our use of sky dips to track relative polarized responsivity
for the W-band array. As a result we rely on daily Tau
A measurements of a single module to measure fast vari-
ations, and use the relative responsivities between the
central module and the other modules from additional
Tau A measurements and an end-of-season polarization
grid measurement to extrapolate absolute responsivities
for all modules.

Additional laboratory studies performed after deploy-
ment explain why the W-band modules were operated
in a compressed regime: inactive components in the W-
band modules had as much as twice the expected loss.
To compensate for this loss, the amplifiers were biased
higher than optimal such that the bias power alone is
a significant contribution to the power required to com-
press the signal. We have produced modules with new
inactive components with lower loss. These modules
exhibit little compression and have noise temperatures
closer to the isolated W-band amplifier noise (∼ 50 K).

8.5. Detector Angles
Absolute polarized detector angles are measured for

the central module of each array through observations
of from Tau A, whose polarization angle is known to
0.2◦ precision from IRAM measurements (Aumont et al.
2010). For the Q-band array, the absolute angle shifted
by as much as 2◦ due to jumps in the pointing data
from a loose encoder during the first half of the Q-band
season. The systematic uncertainties related to the en-
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TABLE 12
Average bandwidths and central frequencies for the Q-band and W-band arrays.

Band Bandwidth (GHz) Central Frequency (GHz)
Value Stat error System. error Value Stat. error System. error

Q 7.6 0.5 1.0 43.1 0.4 1.0
W 10.7 - 1.1 94.5 - 0.8

coder jumps are discussed in (QUIET Collaboration et al.
2011). The Q-band array relied on weekly Moon obser-
vations and an end-of-season sparse wire grid measure-
ment to find the relative polarized angles between the
modules. The relative angle between the central module
and a given module from all ∼ 35 Moon measurements
have a variance of 0.2◦, indicating that the relative angles
remained nearly constant during the season. Relative de-
tector angles are not effected by the encoder jumps.

The W-band array had a smaller, more efficient Tau
A scan trajectory and was able to make measurements
with all modules over the course of the season to obtain
absolute angle calibration. The variance of detector an-
gles for the central module from Tau A is 0.3◦. The rela-
tive angles between modules were confirmed with end-of-
season wire-grid measurements for both arrays to within
the 0.9◦.

Relative angles for all modules are shown in Figure 8.5
W-band array. Systematic errors in the absolute angle
are the largest source of systematic errors for the W-band
array, which would limit our measurement of r to XX at
` ∼100.

8.6. Noise Spectra
Noise measurements at the site were obtained from a

noise spectrum fit to the Fourier-transform of the double-
demodulated time stream for each CES. The measured
noise floor should be proportional to the combination of
module noise temperature, atmospheric temperature, op-
tical spillover temperature, and CMB temperature. We
assume a power law with a flat noise floor for the func-
tional form of the noise spectrum:

N(ν) = σ0

[
1 +

(
ν

νknee

)α]
, (20)

where N(ν) and σ0 have units V/
√

Hz, ν is frequency
in Hertz, σ0 is the white noise level, α is the slope of
the low frequency end of the spectrum, and νknee is the
knee frequency. A typical noise power spectrum for a W-
band module is given in Figure 25, which also shows the
effects on the noise of demodulating and double demod-
ulating the time streams. After double demodulation,
the median knee frequency is 5.5ṁHz (10 mHz) for the
Q-band (W-band) array, thus the noise is white at the
scan frequencies of the telescope, 45–100 mHz.

The white noise is correlated among detector diodes
within a given module. The correlation between Q and
U diodes is expected (Bischoff 2010a); the theoretical
expectation and typical measured correlations are given
in Table 13. The measured correlation coefficients are
larger than theoretically anticipated, and the source is
unknown but could come from unequal transmission in
the coupling hybrid in the module, or from leakage of
the atmosphere causing residual 1/f noise. However, the
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Fig. 25.— Typical noise spectrum of W-band module with
no demodulation, single demodulation, and double demodulation.
Double-demodulation reduces the knee frequencies below the tele-
scope scan frequencies.

noise correlation among diodes is easily treated in the
data analysis (QUIET Collaboration et al. 2011), and
more importantly is not actually present in the polarized
signal we measure, which is a difference between diodes:
(Q1 −Q2) and (U1 − U2).

8.7. System Noise

TABLE 13
Predicted and measured correlation coefficients among

diodes. The errors are the standard deviation of the
correlation coefficients between modules.

Diode × Diode Prediction Typical Measured Value
Q-band W-band

Q × Q 0 0.23 ± 0.09 0.06±0.19
U × U 0 0.22 ± 0.08 0.06±0.21
Q × U 0.5 0.54 ± 0.08 0.48±0.11
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The instrument noise for our system is given by:

Tinstrument = (21)

TCMB + Tatm +
TM

Gatm
+

TW

GatmGM
+

TIR

GatmGMGW
+

TH

GatmGMGWGIR
+

TSP

GatmGMGWGIRGH
+

Tmodule

GatmGMGWGIRGHGSP
,

where Tatm is the effective atmospheric temperature,
Gatm is the transmission through the atmosphere (e−τ
where τ is the opacity from the atmospheric sky model)
TCMB is the temperature of the CMB in thermodynamic
units, Tmodule is the noise temperature of a QUIET
module, {TM,GM}, {TW,GW}, {TIR,GIR}, {TH,GH},
{TSP,GSP} are the temperature and gain for the mir-
ror, window, IR blocker, horns, and septum polarizers,
respectively (Table 14).

The instrument noise can be found from the total
power time streams taken during sky dips. During a sky
dip, the sky temperature as seen by the reciever changes
with telescope elevation. Using an atmopheric model,
the change in signal with this model-dependent change
in sky temperature allows us to estimate the instrument
noise. We found noise values of 26 K for the Q-band ar-
ray, and 106 K for the W-band array. Histograms of in-
strument noise temperatures for both arrays are shown
in Figure 26.

We can estimate the contribution to instrument noise
due to the module alone by subtracting assumed or mea-
sured values for all other known instrument noise sources
(Table 14). All components other than the modules
are lossy; thus their noise temperatures are given by
( 1
G − 1) × Tphys, where G is the gain of the component

and Tphys is its physical temperature. The extrapolated
module temperature is 15 K for a Q-band module, and
77 K for a W-band module. Measurements of the Q-band
amplifiers give noise values of ∼18 K; the most likely
source of the discrepancy is that we are overestimat-
ing the septum polarizer loss. Similar measurements for
the W-band module give amplifier noise values of 50 K,
although the discrepancy is probably also due to com-
pression, which decreases signal-to-noise and hence noise
temperature.

8.8. Instrument Sensitivity
The sensitivity for the polarization response, Spol

(µK
√

s), is calculated as the ratio of the white noise level
to the responsivity. For the Q-band array, after data se-
lection (QUIET Collaboration et al. 2011), the sensitivity
obtained from the white noise floor and the responsivity
is 69µK

√
s corresponding to an average module sensitiv-

ity of 275µK
√

s. For the W-band array, the array sensi-
tivity is 78 µK

√
s, corresponding to an average module

sensitivity of 674 µK
√

s. Both values are given in ther-
modynamic units, such that the power detected by the
receiver has been corrected from a Rayleigh-Jeans ap-
proximation to correspond to the blackbody temperature
of the CMB. Functionally this is performed by dividing
by CRJ, which is 1.05 (1.26) for the Q-band (W-band)

TABLE 14
Estimated contributions to the system noise where the

noise from each component has been divided by the gain of
the previous elements in the optical chain. The values for

the gain are not measured and are included for
illustrative purposes, thus we do not attach errors to
the estimates. The atmospheric temperature and loss

were computed for an elevation of 66◦ (the mid point of
the CES elevation range), and a PWV of 1.2 mm (Q-band)

and 0.94 mm (W-band). The CMB and atmospheric
temperatures are given as Rayleigh-Jeans temperatures.

All ambient temperatures are taken as 270 K.

Description Q-band W-band
Gain Noise(K) Gain Noise(K)

CMB+sky 0.96 11.1 0.98 5.9
Mirrors 0.99 2.7 0.99 2.7
Window 0.99 2.8 0.98 5.5
Horn 0.99 0.2 0.99 0.2
Septum Polarizer 0.9 2.5 0.9 2.3
TOTAL 0.83 19 0.85 17

Measured Tinstrument - 38 - 109
Implied module - 15 - 77

Fig. 26.— System noise temperatures of W-band (main figure)
and Q-band (inset) modules. Elevation-dependent atmospheric
temperature and the CMB temperature have been removed. The
Q-band noise temperatures are obtained from small sky dips and
W-band noise temperatures are obtained from large angle sky dips.

central frequencies. We can compare these to values from
the radiometer equation (Krauss 1986) for the sensitivity
per module, Spol:

Spol =
1
CRJ

× Tinstrument√
2∆νGatm(1− fmask)

. (22)

Using the measured values for Tinstrument and the at-
mospheric gain, Gatm (Table 14), the bandwidths ∆ν
(Section 8.3), the Rayleigh-Jeans correction CRJ for the
CMB, and the fraction of the data we mask during the
phase switch transitions, fmask (14%, Section 6), we find
sensitivity values of 277 µK

√
s for the Q band, and 772

µK
√

s for the W-band. Errors in bandpasses and the
atmospheric temperature contribute directly to the dif-
ference between the two methods of computing the sensi-
tivity Spol. For the W-band array, compression will sig-
nificantly impact this estimate as well because the noise
temperatures are derived from the total power stream
during sky dips. As noted in Section 11, even 1% am-
plifier compression over a 2 K atmospheric temperature
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change can cause as much as 35% compression in the
total power responsivity, which can easily explain the
∼ 15% discrepancy between sensitivities derived from
the noise floor of the CMB observations and from noise
temperatures obtained from the total power signal from
sky dips.

9. INSTRUMENTAL SYSTEMATICS

Excellent control of systematic errors is one of the pri-
mary design drivers of the QUIET instrument. The most
important systematics for the Q-band instrument are
temperature-to-polarization leakage, responsivity fluctu-
ations, and sidelobe contamination (9). For the Q-band
instrument, we also show the level of the tensor-to-scalar
ratio r corresponding to the spurious B-mode polariza-
tion (Ref. QUIET Collaboration et al. (2011)). In this
section, we summarize the primary sources of systematic
errors.

Temperature to polarization leakage (I → Q/U leak-
age) is the largest systematic error in the B-mode mea-
surement for the Q-band instrument at ` ∼ 100, where
it begins to dominate the constraint on r at levels of
r < 0.1. A naive estimate of the impact of this leak-
age would cause it to dominate at a much higher level,
however a combination of sky rotation and frequent bore-
sight rotation suppresses this systematic by two orders
of magnitude.

Monopole leakage in the Q-band system is due to two
sources: an intentional bandpass mismatch between the
septum polarizers and the modules as well as monopole
leakage in the optical chain. We expected monopole leak-
age from the septum polarizers to dominate leakage from
the optical chain, giving rise to a monopole leakage value
of ∼ 1 %. This is consistent with leakage values derived
from Tau A measurements, as discussed in section 3.6.
The band mis-match was introduced to prevent module
oscillations, which occurred from a return loss spike near
the low side of the module bandpass. The leakage from
the differential loss spike at 47 GHz (section 5.1) prefer-
entially leaks excess power into the Q diodes. In the W-
band system we did not need to introduce the band mis-
match between the septum polarizer and the module so
the monopole leakage is dominated by the optics. Hence,
the leakage is smaller (∼0.3 %) and randomly distributed
both in sign and amplitude (because leakage from the
optics has no preferential direction relative to the indi-
vidual module diode orientations), such that spurious B-
mode power will be averaged down. Because the module-
based leakage is removed during double-demodulation,
the measured leakage is dominated by the optical chain
so it is stable over time and can be well calibrated. This
enables us to correct for and simulate the effects of the
leakage during data analysis (Ref. QUIET Collaboration
et al. (2011)).

Optics sidelobes are due to reflector surface imperfec-
tions, spillover past the secondary mirror, and a series of
reflections between the edges of the secondary and pri-
mary mirrors. The antenna range measurement limits all
three effects to -40 dB within 4◦of the main beam and to
-60 dB far from the main beam. The upper ground screen
reduces the far sidelobes by at least an additional -20 dB,
confirmed by sidelobe measurements with the Sun. The
combination of filtering and rejecting contaminated data
makes sidelobe pick-up a negligible effect on the B-mode

measurement.

10. CONCLUSIONS

QUIET employs the largest HEMT-based receiver ar-
rays to date. The 17-element Q-band array has a polar-
ization sensitivity of 69µKs1/2, currently the most sen-
sitive instrument in this band. The 84-element W-band
array has a 78µKs1/2 sensitivity. Together the two ar-
rays give the instrument sensitivity to angular scales ` ∼
25–950.

The QUIET instrument design also achieves extremely
low systematic errors. The optical design utilizes high-
gain, low-crosspolar, and low-sidelobe corrugated feed
horns and septum polarizers. The entire receiver and
mirrors are housed in an absorbing ground shield to re-
duce sidelobe pickup, and is mounted on a 3-axis tele-
scope with boresight rotation. The polarimeter assem-
blies utilizes electronic double modulation to remove
both 1/f noise and monopole leakage. Finally, the
differential-temperature assemblies and calibration tools
provide critical measurements and cross checks of the
systematic errors. The dominant systematic errors at
` ∼ 100 are leakage for the Q-band instrument, and
detector angle calibration for the W-band instrument.
QUIET’s Q-band result has a systematic error of r < 0.1
at ` = 100, the lowest systematic uncertainty on r pub-
lished to date. QUIET’s W-band data has excellent
prospects for improving upon this uncertainty.

Support for the QUIET instrument and operation
comes through the NSF cooperative agreement AST-
0506648. Support was also provided by NSF awards
PHY-0355328, AST-0448909, AST-1010016, and PHY-
0551142; KAKENHI 20244041, 20740158, and 21111002;
PRODEX C90284; a KIPAC Enterprise grant; and by
the Strategic Alliance for the Implementation of New
Technologies (SAINT).

Some work was performed on the Joint Fermilab-KICP
Supercomputing Cluster, supported by grants from Fer-
milab, the Kavli Institute for Cosmological Physics, and
the University of Chicago. Some work was performed on
the Titan Cluster, owned and maintained by the Uni-
versity of Oslo and NOTUR (the Norwegian High Per-
formance Computing Consortium), and on the Central
Computing System, owned and operated by the Com-
puting Research Center at KEK. Portions of this work
were performed at the Jet Propulsion Laboratory (JPL)
and California Institute of Technology, operating under
a contract with the National Aeronautics and Space Ad-
ministration. The Q-band modules were developed using
funding from the JPL R&TD program. We acknowledge
the Northrop Grumman Corporation for collaboration in
the development and fabrication of HEMT-based cryo-
genic temperature-compatible MMICs.

C.D. acknowledges an STFC Advanced Fellowship and
an ERC IRG grant under FP7. R.B. acknowledges sup-
port from CONICYT project Basal PFB-06 and ALMA-
Conicyt 31070015. A.D.M. acknowledges a Sloan foun-
dation fellowship. H.K.E. acknowledges an ERC Starting
Grant under FP7.

PWV measurements were provided by the Atacama
Pathfinder Experiment (APEX). We thank CONICYT
for granting permission to operate within the Chajnan-



The Q/U Imaging ExperimenT 25

TABLE 15
Summary of Instrumental Systematic Errors

Effect Primary Source Excess BB power @ ` = 100
Q-band W-band

I → Q/U (monopole) Septum polarizer and module 5.8×10−3

I → Q/U (dipole/quadrupole) Mirror optics 5.7×10−5

Responsivity fluctuation Backend electronics 1.3×10−4

Sidelobe contamination Optics / Ground screen < 1× 10−4
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11. APPENDIX

11.1. Compression
This section explains some subtleties regarding non-

linearities, and how it affects the polarization and total
power measurements differently. This complicates our
use of periodic telescope skydips to track the total power
responsivity, which we assume to also track the polariza-
tion responsitivity. During CMB operations, the receiver
load temperature varies by ∼ 2K due to changes in the
skyloading. Nonlinearities also affect the use of large
skydip and moon signals to calibrate the total power re-
sponsivity. For HEMT LNAs, the nonlinearities typically
encountered in our operating regime is compression.

We now analyze the effect of compression on polariza-
tion responsivity. Consider a horn looking at an unpolar-
ized background at temperature T0, where T0 = T0x =
T0y, with axes x and y defined by the septum polarizer.
Given below are the Q1 diode measurements for the 0◦
and 180◦ leg B states, and the demod output (which is

the polarization measurement):

S0(0◦) = g0 · (1
2

(T0x + T0y) +
1
2

(T0x − T0y))

S0(180◦) = g0 · (1
2

(T0x + T0y)− 1
2

(T0x − T0y))

S0(demod) =
1
2

(S0(0◦)− S0(180◦))

=
1
2
· g0 · (T0x − T0y) = 0 (23)

where g0 is the gain at temperature T0.
Consider now the horn looking at a source on top

of this background. Without loss of generality, let the
source be polarized in the x direction at temperature
T1 such that T1x = T0x + TSx, T1y = T0y, Tavg =
1
2 · (T0x + TSx + T0y). Then:

S1(0◦) = g1 · (Tavg +
1
2

(T0x + TSx − T0y))

S1(180◦) = g1 · (Tavg − 1
2

(T0x + TSx − T0y))

S1(demod) =
1
2
· g1 · TSx (24)

Note that gain constant g1 is relevant for the tempera-
ture Tavg, for the following reason. Since the incident
E-fields at the horn input are linearly polarized, the sep-
tum polarizer splits the power equally between legs A
and B. And the legs see a constant input power given by
Tavg, regardless of the beam’s position angle. Within the
module, the LNA’s are placed upstream of any phase-
sensitive circuitry. In our model, compression depends
primarily on the input power at the first LNA. There-
fore, the first LNA sees power represented by Tavg, so we
assign the gain g1 to that temperature. Thus equation 24
shows that the polarization measurement is compressed
by (g0−g1)/g1. Using Moon data estimates, (g0−g1)/g1

changes roughly by 0.1% per Kelvin.
We consider now the effect of compression on the to-

tal power responsivity. For an unpolarized background
source at temperature T0, the Q1 diode voltages for the
leg B 0◦ and 180◦ states, and the average (which gives
us the total power) are:

S0(0◦) = g0 · (1
2

(T0x + T0y) +
1
2

(T0x − T0y))

S0(180◦) = g0 · (1
2

(T0x + T0y)− 1
2

(T0x − T0y))

S0(avg) =
1
2

(S0(0◦) + S0(180◦))

=
1
2
· g0 · (T0x + T0y) = g0 · T0 (25)
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Similarly, an unpolarized background source at temper-
ature T1 results in:

S1(avg) = g1 · T1 (26)

Here, g1 and g0 are the gains for temperatures T1 and T0

respectively. It can be shown that:

S1(avg)− S0(avg) = g1(T1 − T0)c (27)

c= (1− g0 − g1

g1

T0

T1 − T0
)

where c is ratio between the observed signal difference
and the expected difference without compression.

Comparing equation 27 with 24, the total power sensi-
tivity compression is magnified by T0/(T1−T0). Assum-
ing as an example, T1 − T0 = 2K (typical for a skydip),
a system temperature of T0= 120K, and a typical gain
compression of (g0 − g1)/g1 = 0.002 over that range, the
resulting ratio is c = 93%, or 7% signal loss. Therefore, in
the data analysis, the absolute responsivities are derived

from polarized source measurements to avoid systematic
biases of this type.

11.2. Double demodulation
This section discusses some imperfections in the mod-

ule, and resolving them using double demodulation. Ta-
ble 9 shows the detector diode outputs of an ideal mod-
ule for the two leg B states, with the leg A state held
fixed. The idealization (see Figure 15(a)) assumes equal
transmission between the two leg B states, the two leg
A states, and an ideal septum polarizer (see 11.3). In
practice, the transmissions are unequal, thus requiring
extra parameters to describe the module. With out loss
of generality, let the transmission through the 0◦(↑) state
of legs A and B be equal to unity, and define βA and βB
to be the transmissions through these legs for the 180◦(↓)
state. We define gA and gB to be the effective gains of
the two legs (see fig. 27). In this more general case, the
detector diode voltages are given by:

VQ1(VQ2) =
1
4



1
2

(gA2 + gB
2)I +

1
2

(gA2 − gB2)V ± gAgBQ
1
2

(gA2 + gB
2βB

2)I +
1
2

(gA2 − gB2βB
2)V ∓ gAgBβBQ

1
2

(gA2βA
2 + gB

2)I +
1
2

(gA2βA
2 − gB2)V ∓ gAgBβAQ

1
2

(gA2βA
2 + gB

2βB
2)I +

1
2

(gA2βA
2 − gB2βB

2)V ± gAgBβAβBQ


(28)

VU1(VU2) =
1
4



1
2

(gA2 + gB
2)I +

1
2

(gA2 − gB2)V ∓ gAgBU
1
2

(gA2 + gB
2βB

2)I +
1
2

(gA2 − gB2βB
2)V ± gAgBβBU

1
2

(gA2βA
2 + gB

2)I +
1
2

(gA2βA
2 − gB2)V ± gAgBβAU

1
2

(gA2βA
2 + gB

2βB
2)I +

1
2

(gA2βA
2 − gB2βB

2)V ∓ gAgBβAβBU


(29)

where the upper (lower) signs correspond to the sig-
nal of the diodes Q1 and U1 (Q2 and U2). The four
rows for each Vi correspond to the phase switch states of
(A,B) = (↑, ↑), (↑, ↓), (↓, ↑), and (↓, ↓), from the top to
the bottom. Transmission imbalance between the phase
switches, signified by the deviation from unity of βA and
βB, causes I → Q/U leakage. This can be seen in Ta-
ble 16, showing the demodulated output dependences on
I · (1−β2

B). However, the difference between the ↑ and ↓
demodulated outputs is free from I− dependence. This
operation is referred to as double-demodulation. For the
W-band, the rms of I → Q/U leakage distribution re-
duces from roughly 0.8% in the demodulated stream, to
0.4% in the double-demodulated stream. A smaller re-
duction of < 0.1% is found for the Q-band, as the leakage
is dominated by other effects.

11.3. Polarimeter Assembly Offset and I → Q/U
Leakage

Fig. 27.— Schematic of signal processing in a QUIET polarimeter
assembly.

As shown in Section 11.2, we can assume that the mod-
ule does not generate any instrumental polarization on its
own, since the double demodulation procedure nulls out
this effect. However, the interaction between the module
and septum polarizer can cause irreducible instrumental
polarization and offsets; this section derives these cou-
plings. Since the module does not generate instrumental
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TABLE 16
Demodulated signal for each leg A phase state, with the
leg B phase state switching at 4 kHz. A factor of 1/4 has
been omitted from each expression. The terms involving

Stokes V are also omitted for simplicity. The upper
(lower) signs correspond to detector diodes Q1 and U1

(Q2 and U2).

Leg A Demodulated
phase state Diode output

↑ Q1 (Q2) 1−βB
2

4 gB
2I ± 1+βB

2 gAgBQ

↑ U1 (U2) 1−βB
2

4 gB
2I ∓ 1+βB

2 gAgBU

↓ Q1 (Q2) 1−βB
2

4 gB
2I ∓ βA

1+βB
2 gAgBQ

↓ U1 (U2) 1−βB
2

4 gB
2I ± βA

1+βB
2 gAgBU

polarization on its own, the module measures:

Qm = 2<(L∗mRm) (30)

and
Um = −2=(L∗mRm), (31)

where Lm and Rm are the signals transmitted into the
module inputs. With out loss of generality, we absorb all
constant factors into the responsivity, and set it to unity.
The signals transmitted into the module inputs need not
be the same as the L and R components at the septum
polarizer input; this difference is a cause of instrumental
polarization.

The effect of the septum polarizer is described by a 4x4
complex scattering matrix S:

E′x
L′

R′

E′y

 = S ·


Ex
Lr
Rr
Ey

 (32)

S =


r1

eiγ√
2
τ21

eiγ√
2
τ31 r41

eiγ√
2
τ21 r2 c i e

iγ√
2
τ24

eiγ√
2
τ31 c r3 −i eiγ√

2
τ34

r41 i e
iγ√
2
τ24 −i eiγ√2

τ34 r4

 (33)

where Ex and Ey are electric field components at the
septum polarizer input port, L′ and R′ are the fields
at the two septum polarizer output ports. E′x and E′y
are the electric fields emitted from the septum polarizer
back toward the feed horn. Lr and Rr are signals re-
flected (or emitted) from the module inputs travelling
back toward the septum polarizer output ports. Here,
eiγ is the propagation phase shift, τij and r are trans-
mission and the reflection coefficients respectively. c is
the cross-polarization coefficient for the backward trav-
elling fields. For an ideal septum polarizer, τij = 1 and
ri = r41 = c = 0. Symmetry across the septum implies
τ21 = τ31, τ24 = τ34, r2 = r3, and r41 = 0; although
manufacturing errors can cause these conditions to be
violated. As described in Sections 5.1 and 8 there are
small departures from ideality; in this section we consider
such effects up to second order. Note that the scattering
matrix is frequency-dependent. The analysis given here
is strictly for a single frequency; in practice, the result
should be averaged with the effective bandpass.

We shall derive perturbatively Lm and Rm, the fields
transmitted into the module inputs due to a sky source
consisting of fields Ex and Ey. We also assume a noiseless
module. The case of a noise signal from the module is
described later. To lowest order, the S matrix applied
to the column vector (Ex, 0, 0, Ey) yields (0, L′, R′, 0),
where

L′ =
eiγ√

2

(
τ21

L+R√
2

+ τ24
L−R√

2

)
=

eiγ

2
[(τ21 + τ24)L+ (τ21 − τ24)R] .

(34)

Similarly,

R′ =
eiγ

2
[(τ31 + τ34)R+ (τ31 − τ34)L] . (35)

where we use Ex = (L+R)/
√

2 and Ey = (L−R)/(i
√

2).
However, Lm and Rm differ from L′ and R′ due to reflec-
tion at the module input. Let rL (rR) be the reflection co-
efficient at the module’s L (R) input. Then the S matrix
applied to (Ex, rLL′, rRR′, Ey) yields (−, Lm, Rm,−)
where

Lm = (1 + r2rL)L′ + crRR
′. (36)

Rm = (1 + r3rR)R′ + crLL
′. (37)

and for simplicity, we omit giving the expression for the
first and fourth component. The module output is

L∗mRm = L′∗R′(1 + r3rR+ r∗2r
∗
L) +L′∗L′crL+R′∗R′c∗r∗R

(38)
where we assume that ri, c, rR and rL are all small, and
we drop terms above second order.

We now simplify the RHS of equation 38 into the un-
derlying physics parameters Q and U , in order to iden-
tify the sources of instrumental polarization. The terms
L′∗L′ and R′∗R′ need only be calculated to leading or-
der, since in they appear in equation 38 multiplied by
the second order terms crL and c∗r∗R. To leading order,
L′∗L′ = L∗L and R′∗R′ = R∗R since τij ≈ 1.

The first term in Eq. 38 is expanded by substituting
equation 34 and 35 and using L∗R = (Q− iU)/2, LL∗ =
(I + V )/2, and RR∗ = (I − V )/2 to obtain

L′∗R′ =
1
4

((τ∗21τ31 + τ∗24τ34)Q− i(τ∗21τ34 + τ∗24τ31)U

+ (τ∗21τ31 − τ∗24τ34)I + (τ∗24τ31 − τ∗21τ34)V ).
(39)

The first two terms are the expected response to Q and
U . The presence of τij in these terms parameterizes
the imperfections in the septum polarizer transmissions.
These terms reduce the gain to Q and U , and in gen-
eral cause mixing between Q and U . In practice, we
absorb the gain into the calibration of the total system
responsivity35, and absorb the induced Q/U mixing into
a redefinition of the detector angle. Therefore, these two
terms do not cause instrumental polarization, and we
can neglect these imperfections in the following discus-
sion. By the same argument, the terms r3rR and r∗2r

∗
L

in equation 38 can be ignored since their only effect is to
change the gain.

35 The effect of the gain difference on the leakage terms is a
neglected higher order effect.
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The third and fourth terms represents I → Q/U and
V → Q/U leakage respectively. Since V � I for rea-
sonable sources and the coefficients have the same order,
we neglect these circular polarization terms. Combin-
ing these observations, we finally arrive at the desired
expression for the RHS of equation 38:

L∗mRm =
1
4

[2Q− 2iU + (τ∗21τ31 − τ∗24τ34)I]

+
1
2

(crL + c∗r∗R)I.
(40)

The module output is:

Qm = Q+
1
2
<(τ∗21τ31− τ∗24τ34)I +<(crL + c∗r∗R)I, (41)

where the first term is the expected response, the second
term is I → Q leakage due to differential loss, and the
third term is leakage caused by reflections at the mod-
ule inputs coupling with the septum polarizer crosstalk.
Similarly:

Um = U − 1
2
=(τ∗21τ31− τ∗24τ34)I −=(crL + c∗r∗R)I. (42)

In summary, the two equations above describe the mea-
surements of a sky signal, in the absence of noise from
the module.

We now consider the case of noise emitted from the
module inputs, reflecting from the septum polarizer and
returning into the module. Module noise stems primarily
from the HEMT-based first stage LNA’s. Since the sky
signal and module noise are relatively incoherent, they
decouple and we can neglect the sky signal in the follow-
ing. Let the module noise fields be given by the column
vector (0, Lr, Rr, 0). Applying the S matrix, we get the
vector (−, Lm, Rm,−) where

Lm = L′ = r2Lr + cRr (43)

Rm = cLr + r3Rr. (44)

The output is

L∗mRm = r∗2L
∗
rcLr + c∗R∗rr3Rr (45)

because the LrRr terms average to zero because the two
amplifier noises are uncorrelated. Thus each output ac-
quires an offset

Qm = 2L∗rLr<(r∗2c) + 2R∗rRr<(c∗r3). (46)

Um = −2L∗rLr=(r∗2c)− 2R∗rRr=(c∗r3) (47)

The offset is independent of the input I; however, it is
modulated by gain fluctuations so the offset also con-
tributes to 1/f noise.
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ABSTRACT
We describe a Bayesian framework for estimating the time-domain noise covariance of CMB obser-

vations, typically parametrized in terms of a 1/f frequency profile. This framework is based on the
Gibbs sampling algorithm, which allows for exact marginalization over nuisance parameters through
conditional probability distributions. In this paper we implement support for gaps in the data streams
and marginalization over fixed time-domain templates, and also outline how to marginalize over con-
fusion from CMB fluctuations, which may be important for high signal-to-noise experiments. As a
by-product of the method, we obtain proper constrained realizations, which themselves can be useful
for map making. To validate the algorithm, we demonstrate that the reconstructed noise parame-
ters and corresponding uncertainties are unbiased using simulated data. The CPU time required to
process a single data stream of 100 000 samples with 1000 samples removed by gaps is 3 seconds if
only the maximum posterior parameters are required, and 21 seconds if one also want to obtain the
corresponding uncertainties by Gibbs sampling.
Subject headings: cosmic microwave background — cosmology: observations — methods: statistical

1. INTRODUCTION

Detailed observations of the cosmic microwave back-
ground (CMB) during the last two decades have revolu-
tionized cosmology. Through detailed measurements of
the angular CMB power spectrum, a highly successful
cosmological concordance model has been established,
stating that the universe is statistically isotropic and
homogeneous, filled with Gaussian random fluctuations
drawn from a ΛCDM spectrum, and consists of 4% bary-
onic matter, 23% dark matter and 73% dark energy (e.g.,
Komatsu et al. 2011, and references therein). Using this
model, millions of data points from many different types
of cosmological observations can be fitted with only six
free parameters.

This success has been driven primarily by rapid
progress in CMB detector technology, allowing experi-
mentalists to make more and more detailed maps of the
CMB fluctuations. However, such maps are imperfect, in
the sense that they typically are contaminated by various
instrumental effects. For instance, the optics of a given
experiment can be asymmetric; the detector gain may
be unknown and time-dependent; the data may exhibit
resonant frequencies due to electronics or cooling non-
idealities; and the observations are invariably noisy. All
these non-idealities must be properly understood before
one can attempt to extract cosmology from the observa-
tions.

In this paper we consider one specific component
within this global calibration problem, namely how to
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estimate the statistical properties of the instrumental
noise in light of real-world complications. This prob-
lem has of course already been addressed repeatedly in
the literature (e.g., Prunet et al. 2001; Hinshaw et al.
2003), and our method is in principle similar to that
of Ferreira & Jaffe (2000), taking a Bayesian approach
to the problem. The main difference is that we formu-
late the algorithm explicitly in terms of a Gibbs sampler
including both the time stream and the noise parame-
ters as unknown variables, and this has several distinct
advantages. First, it allows us to obtain proper uncer-
tainties on all derived quantities. Second, gap filling is
directly supported through built-in proper constrained
realizations. This can for instance be used to account
for instrumental glitches in the time stream, or to ex-
clude point sources and other bright sources from the
analysis. Third, it is straightforward to add support for
additional nuisance parameters, due to the conditional
nature of the Gibbs sampler. In this paper we imple-
ment template marginalization, which may for instance
be useful for removing cosmic ray glitches in the Planck
HFI data (Planck 2011b) or ground pickup for ground
based experiments (e.g., QUIET 2011). We also out-
line the formalism for marginalization over CMB fluctu-
ations, which may be relevant for experiments with high
signal-to-noise ratio.

The method presented here is mathematically identi-
cal to the CMB Gibbs sampling framework developed
by Jewell et al. (2004); Wandelt et al. (2004); Eriksen
et al. (2004, 2008), and the main difference is simply
that the object under consideration is a one-dimensional
time stream instead of a two-dimensional field on the
sphere. This makes the implementation considerably
simpler, and the run times correspondingly faster. As
a demonstration of the practicality of the method, we
apply it to simulated data with properties typical for
current ground-based experiments, and demonstrate ex-
plicitly that the computational costs of the method are
tractable. The experiment of choice will be QUIET



2

(2011), for which this method was initially developed.

2. DATA MODEL

The first step of any Bayesian analysis is to write down
an explicit parametric model for the observations in ques-
tion. In this paper, we start with the assumption that
the output, d, from a given detector can be written in
terms of the following sum,

d = n + Ps + Ta + m. (1)

Here each term indicates a vector of n values sampled
regularly in time in steps of ∆t, that is, d = {di} with
i = 1, . . . , N .

The first term on the right-hand side, n, indicates the
instrumental noise, which is our primary target in this
paper. All the other components are only nuisance vari-
ables that we want to marginalize over.

We assume that the noise is Gaussian distributed and
stationary over the full time range considered. In prac-
tice this means that the full data set of a given ex-
periment should be segmented into parts which are in-
dividually piecewise stationary. For QUIET this cor-
responds to division into so-called “constant elevation
scans” (QUIET 2011), while for Planck it corresponds
to division into so-called “rings”, which are one-hour ob-
servation periods with a fixed satellite spin axis (Planck
2011a). Because the noise is assumed stationary, the
time-domain noise covariance matrix, N, depends only
on the time lag between two observations, Ntt′ = N(t−
t′): It is a Toeplitz matrix, and may therefore be well ap-
proximated in Fourier domain with a simple diagonal ma-
trix, Nνν′ = Nνδνν′ . Here Nν is the Fourier-domain noise
power spectrum, which is given by the Fourier transform
of N(t− t′).

Our main task is to estimate Nν , and we do so in terms
of a parametrized function. For many experiments this
function is well approximated by a so-called 1/f profile,

Nν = σ2
0

[
1 +

(
ν

fknee

)α]
(2)

which describes a sum of a correlated and an uncorre-
lated noise component in terms of three free parameters.
The white-noise RMS level, σ0, defines the overall am-
plitude of the noise; the knee frequency, fknee, indicates
where the correlated and the uncorrelated components
are equally strong, and α is the spectral index of the cor-
related component. Collectively, we denote {σ0, α, fknee}
by θ. Of course, other parametrizations may easily be
implemented if necessary.

The second term on the right-hand side, Ps, indicates
the contribution from the CMB sky, with P being a
pointing matrix, typically equal to zero everywhere ex-
cept at Pip if the detector points towards pixel p at time
i, and sp is the true (beam convolved) CMB signal. We
make the usual assumption that s is isotropic and Gaus-
sian distributed with a given angular power spectrum,
Cℓ. In this paper, we will simply outline the formalism
for how to deal with this term, and leave the implemen-
tation for a future paper dedicated to Planck analysis;
as mentioned in the introduction, this machinery was
initially developed QUIET, which is strongly noise dom-
inated for a single data segment, and the CMB com-
ponent is therefore not important, as will be explicitly

demonstrated in this paper.
The third term is a sum over ntemp time-domain tem-

plates. These can be used to model several different types
of nuisance components. Three examples are diffuse fore-
grounds and cosmic ray glitches for Planck, and ground
pick-up for QUIET. In either case, we assume in this pa-
per that the template itself is perfectly known, and the
only free parameter is an overall unknown multiplicative
amplitude a. This is a vector of length ntemp, and T is
the two-dimensional n×ntemp matrix listing all templates
column-wise.

Finally, the fourth term on the right-hand side of Equa-
tion 1 denotes a time-domain mask, m. This is imple-
mented by a “Gaussian” component having zero variance
for samples that are not masked, and infinite variance
for samples that are masked. In order to make analytic
calculations more transparent, we write the the corre-
sponding covariance matrix as a diagonal matrix with
elements

Mii =
{

a, i not masked
ǫ, i masked , (3)

where a → ∞ and ǫ → 0. A typical application of this
component is to remove periods of instrumental glitch-
ing, or to discard particularly bright observations when
the telescope points towards bright astrophysical sources,
such as point sources or the Galactic plane.

3. GIBBS SAMPLING AND THE POSTERIOR

Our primary goal is now to map out P (θ|d), the noise
spectrum posterior distribution marginalized over all nui-
sance components. By Bayes’ theorem this distribution
reads

P (θ|d) =
P (d|θ)P (θ)

P (d)
∝ L(θ)P (θ), (4)

where L(θ) = P (d|θ) is the likelihood, P (θ) is a prior on
θ, and P (d) is an irrelevant normalization constant.

In this paper we adopt for simplicity uniform priors on
σ0, α and fknee. For typical relevant time series which
contain ∼ 105 samples, these parameters are usually
strongly data-driven, and the choice of priors is there-
fore irrelevant. However, if an informative prior (or the
Jeffreys’ prior) is desired for a given application, it is
straightforward to include this as indicated by Equa-
tion 4.

Since we assume that the noise is Gaussian distributed
with covariance N(θ), the likelihood is given by

L(θ) ∝ e−
1
2nT N−1(θ)n√|N(θ)| , (5)

where n = d − Ps − Fa −m is the noise component of
the data stream.The goal is to compute this distribution,
marginalized over s and a, while at the same time taking
into account possible gaps in the data.

The latter point touches on an important computa-
tional issue. If there are no gaps in the data, then N is a
Toeplitz matrix, and multiplication with N is performed
most efficiently in Fourier space. However, the same does
not hold if there are gaps in d, since the symmetry of N
is broken. The well-known solution to this problem is to
fill the gap with a constrained noise realization with the
appropriate spectrum (e.g., Hoffman & Ribak 1991). In
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our formulation, this is equivalent to estimating n jointly
with θ.

More generally, we want to estimate the joint density
P (n,m, s, a, θ|d), from which any desired marginal may
be obtained. At first sight, this appears like a formidable
computational problem, involving more than 105 free pa-
rameters. However, this is also a problem that may be
tackled by means of the statistical technique called Gibbs
sampling, which has already been described in detail for
computing the CMB angular power spectrum with con-
taminated data by Jewell et al. (2004); Wandelt et al.
(2004); Eriksen et al. (2004, 2008).

According to the theory of Gibbs sampling, samples
from a joint distribution may be obtained by iteratively
sampling from each corresponding conditional distribu-
tion. For our case, this leads to the following sampling
scheme,

m,n← P (m,n|s, a, θ,d) (6)
s,n← P (s,n|a, θ,m,d) (7)
a,n← P (a,n|θ,m, s,d) (8)

θ ← P (θ|n,m, s, a,d) (9)

The symbol ← indicates sampling from the distribu-
tion on the right-hand side. With this algorithm,
(n,m, s, a, θ)i will be drawn from the correct joint dis-
tribution.

Note that each of the sampling steps that involve time-
domain vectors are joint steps including the noise com-
ponent itself. This approach is highly computationally
advantageous as it allows for fast multiplication with N
in Fourier domain; conditional algorithms for sampling
each component separately would require slow convolu-
tions in time domain. Of course, it is fully acceptable
within the Gibbs sampling machinery to sample some
components more often that others.

Note also that if we are only interested in the joint
maximum-posterior parameters, we can replace the rele-
vant steps in the above algorithm by a maximization op-
eration, such that we maximize the conditional instead
of sampling from it. The algorithm then reduces to a
typical iterative approach, but formulated in a conve-
nient and unified statistical language. The advantage of
this approach is computational speed, while the disad-
vantage is the loss of information about uncertainties.
Both versions of the algorithm will be implemented and
demonstrated in the following.

4. SAMPLING ALGORITHMS

Equations 6–9 defines the high-level algorithm in terms
of conditional sampling steps. To complete the method,
we have to establish efficient sampling algorithms for
each conditional distribution.

4.1. Noise estimation with ideal data
Perhaps the most fundamental conditional distri-

bution in the sampling scheme outlined above is
P (θ|n,m, s, a,d). This describes the distribution of the
noise parameters given perfect knowledge about all com-
ponents of the data. To obtain an explicit expression for
this distribution, we first note that P (θ|n,m, s, a,d) =
P (θ|n); if we know the true noise component, n, no fur-
ther information about either the CMB signal, the tem-
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Fig. 1.— Correlation function for α of the Metropolis sampler
employed to sample from P (θ|n) with a curvature matrix based
proposal density. Similar plots for σ0 and fknee look visually the
same. The correlations fall below 10% at a lag of ∼20 samples, and
we adopt a thinning factor of ∼20 samples to suppress correlations,
given that the computational cost of this sampling step is lower
than the constrained realization sampler.

plate amplitudes, or, indeed, the actual data is needed
in order to estimate the noise parameters.

The expression for the conditional distribution P (θ|n)
is then formally the same as that for P (θ|d) given by
Equations 4 and 5. Writing this out in Fourier space
for the 1/f profile discussed in Section 2, one finds the
following explicit distribution for θ = {σ0, α, fknee},
− lnP (σ0, α, fknee|n) = − ln P (σ0, α, fknee)

+
∑
ν>0

[
pν

Nν
+ ln Nν

]
. (10)

Here pν are the power spectrum components of the data
n, while Nν = Nν(σ0, α, fknee) is the covariance matrix
which in Fourier space is diagonal and given by Equa-
tion 2. The first term on the right-hand side is a user-
defined prior.

To sample from this distribution, we use a stan-
dard Metropolis sampler with a Gaussian proposal den-
sity (e.g., Liu 2001). Each chain is initialized at the
maximum-posterior point, which is found by a non-linear
quasi-Newton search, and the covariance matrix of the
Gaussian proposal density is taken to be the square root
of the curvature matrix, evaluated at the maximum-
posterior point. The elements of the inverse curvature
matrix, C−1 = −∂2 log P (θ|n)/∂θi∂θj , read

C−1
θiθj

=∑
ν>0

[(
1

Nν
− pν

N2
ν

)
∂2Nν

∂θi∂θj
+

(
2pν

N3
ν

− 1
N2

ν

)
∂Nν

∂θi

∂Nν

∂θj

]
.

(11)

We have found that this proposal density leads to a
Markov chain correlation length of about 20 samples
for typical parameter values, and we therefore thin our
chains by this amount. In addition, we remove a few
post-thinned samples at the beginning of the chain to re-
move potential burn-in, although we have never seen evi-
dence of any such effects. Finally, if we only want to find
the maximum-posterior point, and not run a full-blown
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Fig. 2.— Constrained realizations through a gap in the data. The
extent of the gap is indicated by the two vertical dashed lines; the
solid black curve shows the input data, which is dominated by a
point source (thin spikes) in the masked out region. Five different
constrained realizations are shown by colored lines. These depend
only on the data outside the mask, and are therefore not affected
by the point source.

Gibbs chain, as discussed in Section 3, we terminate the
process directly after the initial quasi-Newton search.

4.2. Gap filling by constrained realizations
Next, we need to establish a sampling algorithm for

P (n,m|s, a, θ,d) = P (n,m|r, θ), where the residual r =
d − Ps − Ta = n + m. Note that r and n differ only
by m, which represents contaminated segments of data
that are masked out. The problem is therefore reduced
to sampling the components of a sum of Gaussians given
the sum itself. This may be achieved efficiently by solving
the equation[

N−1 + M−1
]
n = M−1r + N− 1

2 v + M− 1
2 w (12)

for n, where v and w are vectors of standard N(0, 1)
Gaussian random variates (e.g., Jewell et al. 2004; Wan-
delt et al. 2004; Eriksen et al. 2004).

The matrices involved here are typically of the order
105 × 105, so the equation cannot be solved by brute
force. But since M is diagonal in time domain and N is
diagonal in frequency domain (due to its Toepliz nature),
all multiplications are cheap in either time or Fourier do-
main, and the equation can be efficiently solved with the
Conjugate Gradients method, properly changing basis as
needed.

However, there is one practical complication involved
in Equation 12: Since we intend to let ǫ→ 0 and a→∞,
the matrix N−1 + M−1 becomes infinitely poorly condi-
tioned. We can solve this problem, as well as significantly
simplifying the equation, by splitting it into one equation
for the masked region, and one for the unmasked region.
Introducing the notation x1 and x2 for the unmasked
and masked subsets of a vector x respectively, we find

(N−1n)1 + ǫ−1n1 = ǫ−1r1 + (N− 1
2 v)1 + ǫ−

1
2 w1 (13)

(N−1n)2 + a−1n2 = a−1r2 + (N− 1
2 v)2 + a−

1
2 w2 (14)

which in the limit ǫ→ 0, a→∞ simplifies to

n1 = r1 (15)

(N−1n)2 = (N− 1
2 v)2 (16)

Note that equations 15–16 form an asymmetric equation
system5. The Conjugate Gradients method is therefore
not directly applicable, and the more general Biconjugate
Gradients method must be used instead.

We found a simple diagonal preconditioner with value
Var(n) inside the mask and value 1 outside it to be suf-
ficient.

4.3. Marginalization over fixed templates
The sampling algorithms described in Sections 4.1 and

4.2 defines the core noise Gibbs sampler, and together
form a well-defined and complete noise estimation al-
gorithm for low signal-to-noise data with gaps. How-
ever, one of the main advantages of the Gibbs sampling
algorithm compared to other alternatives is its natural
support for marginalization over nuisance parameters.
In this section we describe the sampling algorithm for
marginalization over fixed time-domain templates, de-
scribing for instance ground pickup, diffuse foregrounds
or cosmic ray glitches.

First, we note that while the original data stream, d,
may contain gaps, and the Toeplitz nature of the noise
covariance matrix is in that case broken, the constrained
realization produced in Section 4.2 restores the Toeplitz
symmetry. It is therefore computationally advantageous
to use q = d − Ps −m = n + Ta as the data in this
step6, so that P (a,n|θ,m, s,d) = P (a,n|q, θ).

Starting with Equation 5, solving for a and complet-
ing the square in the exponential, the appropriate con-
ditional distribution for a is found to be the well-known
distribution

P (a|q, θ) ∝ e−
1
2 (a−â)t(TtN−1T)(a−â), (17)

where â = (TtN−1T)−1TtN−1q; that is, P (a|q, θ) is
a Gaussian distribution with mean â and covariance
Ca = (TtN−1T)−1. The same result has been derived
for numerous other applications, one of which was de-
scribed by Eriksen et al. (2004), outlining template am-
plitude sampling with CMB sky map data.

Sampling from this distribution is once again straight-
forward. If one only wish to marginalize over a small
number of templates, the easiest solution is simply to
compute both â and Ca by brute-force, and let ai+1 =
â+Laη, where La is the Cholesky factor of Ca = LaLt

a,
and η is a vector of uncorrelated standard Gaussian
N(0, 1) variates. On the other hand, if there are more
than, say, 1000 templates involved, it may be faster to

5 Equations 15–16 can be rewritten as

[

1 0
N−1

21 N−1
22

]

=

[

r1

(N−
1
2 v)2

]

This is asymmetric because we multiplied the unmasked part of
the equation by ǫ in order to get a finite result.

6 Of course, one could write down a sampling algorithm for a
that only uses the non-masked data directly, but this would require
heavy time-domain convolutions, and not take advantage of the
symmetries inherent in the noise covariance matrix.
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Fig. 3.— Recovered noise parameters from 10 000 noise-only simulations with gaps. The dashed horizontal lines indicate the true input
value.

solve the following equation by Conjugate Gradients,

(TtN−1T)a = TtN−1q + TtN− 1
2 ω, (18)

where ω is a full time-stream of N(0, 1) random variates.
In this paper, which has the QUIET experiment as its
main application, we only use the former algorithm; for
Planck the latter algorithm may be useful in order to
account for frequent and partially overlapping cosmic ray
glitches efficiently.

4.4. CMB signal marginalization
Most CMB experiments are strongly noise-dominated

within relatively short time periods, and need to inte-
grate over the sky for a long time in order to produce
high-sensitivity maps. For instance, for the first-season
QUIET experiment the mean polarized sensitivity of a
detector was 280µK

√
s (QUIET 2011), while the polar-

ized CMB sky has an RMS of ∼ 1µK on the relevant
angular scales. In such cases, it is an excellent approx-
imation simply to ignore the CMB contribution when
estimating the noise parameters. However, this approx-
imation does not hold for all experiments, and one par-
ticularly important counterexample is Planck.

In order to marginalize over the CMB signal we need to
be able to sample from P (s,n|a, θ,m,d) = P (s,n|u, θ),
where the residual is u = d−m−Fa = Ps + n. This is
again a case that involves sampling terms of a Gaussian
sum given the sum itself. The only difference from Sec-
tion 4.2 is that a projection operator is involved in this
case,

(S−1 + PT N−1P)s = PT N−1u + S−
1
2 v + PT N− 1

2 w
(19)

Here v and w are vectors of standard normal samples
in pixel and time domain respectively. Note that M is
not involved this time, so the expression can be used
as it is. As before, multiplications involving N are ef-
ficient in Fourier space due to the Toeplitz nature of
N, but the CMB signal covariance, S, will in general
be dense, depending on the true CMB power spectrum.
This makes this method prohibitively expensive for gen-
eral asymmetric scanning strategies. There are, however,
circumstances for which also this multiplication becomes
efficient. One obvious case is that of full sky coverage,

where a change to spherical harmonic basis makes S di-
agonal.

More interestingly, S also becomes diagonal when ex-
pressed in Fourier basis on a circle on the sky. To
see this, consider a circle with radius θ on the sphere,
parametrized by the angle φ. The covariance between
the points p1 = (θ, φ1) and p2 = (θ, φ2) with angular
distance r is given by the two-point correlation function:

S(p1, p1) = C(r) =
1
4π

∞∑
l=0

(2l + 1)ClPl(cos(r)) (20)

Since r(p1, p2) for the case of a circle only depends on
∆φ, and is independent of φ itself, S(φ1, φ2) is a Toepliz
matrix, and is therefore diagonal in Fourier space. This
is highly relevant for Planck, since the Planck scanning
strategy (Planck 2011a) naturally divides into scans of
circles. Therefore, in this case sampling s← P (s|u) can
be done at very low extra cost.

5. APPLICATION TO SIMULATED DATA

In this section we demonstrate the noise Gibbs sampler
as described in Section 4 on a particular type of QUIET
simulations. QUIET is a radiometer-based CMB B-mode
polarization experiment located in the Atacama desert
(QUIET 2011), which took observations from August
2008 to December 2010. The first results were based on
only nine months worth of data, and yet already provided
the second most stringent upper limit on the tensor-to-
scalar ratio, r, to date based on CMB polarization mea-
surements.

In its normal mode of operation, QUIET observed four
separate CMB fields on the sky which were each chosen
because of their low foreground levels. In this mode, the
experiment is totally noise dominated on time scales of
an hour or less, with a mean polarized sensitivity per
detector diode of 280µK

√
s (QUIET 2011).

However, QUIET also observed two Galactic patches,
one of which was the Galactic center, as well as several
bright calibration objects, such as the Moon, Tau Alpha
and RCW38. These sources are bright enough to be seen
visually in each detector time stream, and they can there-
fore bias any noise estimates unless properly accounted
for. Such objects also complicate automated data selec-
tion processes, since it is difficult to distinguish between
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TABLE 1
Validation by simulations

Simulation σ0 (10−5V) α fknee (10−1Hz)

Posterior maximization (absolute parameter values)

Gaps only 1.000± 0.003 −1.80± 0.06 1.00± 0.05
Gaps + uncorrected CMB 1.000± 0.003 −1.80± 0.06 1.00± 0.05
Gaps + uncorrected ground pickup 1.006± 0.003 −1.52± 0.05 1.51± 0.08
Gaps + corrected ground pickup 1.000± 0.003 −1.80± 0.06 1.00± 0.05

Gibbs sampling (normalized parameter values)

Gaps only −0.02± 1.00 0.01± 1.01 0.03± 1.01
Gaps + uncorrected CMB −0.02± 1.00 0.00± 1.01 0.02± 1.01
Gaps + uncorrected ground pickup 1.78± 1.03 6.04± 1.36 6.63± 0.77
Gaps + corrected ground pickup −0.02± 1.00 0.00± 1.00 0.03± 1.00

Note. — Summary of recovered noise parameters from various simulated ensembles.
Each column indicates the mean and standard deviation of the resulting parameter
distribution. The top section shows results obtained when simply maximizing the
posterior, while the bottom section shows the results for a full Gibbs sampling analysis.
Each run in the top section consists of 10000 simulations, while each run in the bottom
section consists of 5000 simulations. All runs have been started with the same seed, to
ensure directly comparable results.

an astrophysical object and an instrumental glitch.
In this section we show how the algorithm developed

in Section 4 may be applied to such situations. Specifi-
cally, we consider a observing session lasting for about 40
minutes of a field including a bright source with known
location, and assume that the data may be modeled as
d = n + Ta + m. Here T is a single template describing
possible sidelobe pick-up from the ground, constructed
from the full observing season as described by QUIET
(2011), and m is a time-domain mask that removes any
samples that happen to fall closer than 1◦ from the source
center. The total number of samples in the data stream
is 60 949, and the total number of masked samples is 651.

The simulations used in this section are constructed
as follows. We set up an ensemble of 104 time streams
containing correlated Gaussian random noise with σ0 =
10−5V, α = −1.8 and fk = 0.1Hz; the white noise and
spectral index are representative for a QUIET detector,
while the knee frequency is grossly exaggerated to push
the algorithm into a difficult region of parameter space,
as well as to more clearly visualize the outputs of the
algorithm. A far more reasonable value for QUIET is
fk = 10mHz, and we have of course verified that the
algorithm also works for such cases. Further, it reaches
convergence faster in that case than with the extreme
value of fk used in the present simulations.

5.1. Visual inspection of constrained realizations
Before considering the statistical properties of the re-

sulting posterior distributions, it is useful to look visu-
ally at a few constrained realizations in order to build
up intuition about the algorithm. In order to highlight
the behavior of the constrained realizations, we make
two adjustments to the above simulation procedure for
this case alone: First, we replace the tuned mask with a
wide 6000-sample mask, covering the entire time range in
which the source is visible, and second, we make the cor-
related noise component stronger by setting σ0 = 10−6V,
fknee = 1Hz and α = −2.3.

The results are shown in Figure 2. The raw data are
shown in the solid black line, and the vertical dashed

lines indicate the extent of the gap. The colored curves
within the gap shows 5 difference constrained realiza-
tions; note that together with the black solid curve out-
side the mask, any of these form a valid noise realization
with the appropriate noise power spectrum as defined by
σ0, α and fknee. They are each a valid sample drawn
from P (n,m|d). However, if one had tried to estimate
the noise spectrum also using the data inside the gap, the
source signal (seen as sharp spikes in Figure 2) would bias
the resulting noise parameters.

In this paper, we consider the constrained realizations
primarily to be a useful tool that allows for fast noise
covariance matrix multiplications in Fourier space. How-
ever, these constrained realizations can of course also be
useful in their own right, for instance for deglitching a
time stream before map making.

5.2. Validation and statistical characterization
We now seek to statistically validate our algorithms

and codes. Both the posterior maximization and the
Gibbs sampling algorithms are considered. The number
of simulations are 10 000 for posterior maximization and
5000 for Gibbs sampling, with properties as described
above. In each case, we consider four different models.
First, we analyze simulations including only noise and
gaps. Second, we add a CMB signal to each realiza-
tion, but do not attempt to correct for it. Third, we
add a strong ground template to each realization, and
do also not attempt to correct for it. Fourth, we analyze
the same ground-contaminated simulations as above, but
this time do marginalize over an appropriate template.
The same random seeds were used in each of the four sim-
ulation and analysis results, in order to allow for direct
comparison of results between runs.

The results from this exercise are summarized in Ta-
ble 1, and histograms for the first case are shown in
Figure 3. First, the the upper section in Table 1 lists
the mean and standard deviation of the recovered pa-
rameters for the posterior maximization algorithm. Re-
call that the input parameters were (σ0, α, fknee) =
(10−5V,−1.8, 0.1Hz), and these are recovered perfectly
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Fig. 4.— Left: CPU time as a function of total number of samples in the time stream, keeping the number of masked samples constant.
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in all cases, except for the one involving an uncorrected
ground template, as expected.

Second, in the bottom half we show the results from
the Gibbs sampling analyses, but this time in terms of
normalized parameters on the form r = (θest − θin)/σest,
where θest and σest are the mean and standard deviation
of the Gibbs chain for a given parameter (removing the
first 10% of the samples for burn-in), and σin is the true
input value. If the Gibbs chain is both unbiased and has
the correct dispersion, r should be Gaussian distributed
with zero mean and unit variance. As seen in Table 1,
this is indeed the case.

We also note that adding a CMB component to these
simulations do not bias the noise estimates, simply be-
cause the CMB is too weak to be detected on the time
scales considered here. This confirms the assumption
made by the QUIET team when estimating their noise
properties: The QUIET observations are sufficiently
noise dominated on a one-hour time scale that the CMB
can be safely neglected for noise estimation purposes.

5.3. Resource requirements
To be practical, it is not sufficient that a method is ro-

bust and accurate, but it must also be computationally
efficient. For the present algorithm the two most im-
portant parameters for computational speed are 1) the
total number of samples in the time stream, n, and 2)
the number of masked samples, m, while also the relative
position of the masked samples play an important role.

In Figure 4 we show the scaling of each of the two algo-
rithms (posterior maximization and Gibbs sampling) as
a function of both n (left panel) and m (right panel). In
the left plot, m was fixed at 1000, divided into ten gaps
of 100 samples each, and only the total length of the

data stream was varied. In this case, we should expect
the scaling of the overall algorithm to be dominated by
Fourier transforms, suggesting an overall behavior given
by O(n log n). As seen in Figure 4, this approximation
holds to a very high degree, both for posterior maximiza-
tion and Gibbs sampling. Further, we see that the CPU
time required to analyze a single 100 000 sample data
set with 1000 samples removed is 3 seconds for posterior
maximization and 21 seconds for Gibbs sampling.

In the middle panel, we fix n at 100 000, and increase
m by varying the number of gaps, each extending 100
samples. Perhaps somewhat surprisingly, we see that the
computing time in this case is nearly independent of m.
The reason for this is simply that the number of conju-
gate gradient iterations required for the gap filling proce-
dure is largely determined by condition number (ie., the
ratio between the highest and smallest eigenvalue) of the
covariance matrix of a single gap. Having more gaps sep-
arated by more than one time-domain correlation length
effectively corresponds to performing multiple matrix in-
versions in parallel, and the net cost therefore do not
increase significantly.

In the third panel, we increase m by making one gap
larger, as opposed to adding many small gaps. In this
case the CPU time does increase dramatically, because
it becomes increasingly hard for the algorithm to fill the
missing pieces of the data stream. In this case, the noise
covariance matrix condition becomes larger and larger.

6. SUMMARY

We have described and implemented a Bayesian frame-
work for estimating the time-domain noise power spec-
trum for non-ideal CMB experiments. This framework is
conceptually identical to a previously described method
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for estimating the angular CMB power spectrum from
CMB sky maps (Jewell et al. 2004; Wandelt et al. 2004;
Eriksen et al. 2004), and relies heavily on the Gibbs sam-
pling algorithm. The single most important advantage
of this method over existing competitors in the literature
derives from the conditional nature of the Gibbs sampler:
Additional parameters may be introduced conditionally
into the algorithm. This allows for seamless marginal-
ization over nuisance parameters, which otherwise may
be difficult to integrate. A second important advantage
of the method is the fact that it provides proper un-
certainties on all estimated quantities, which at least in
principle later may be propagated into final estimates of
the uncertainties of the CMB sky map and angular power
spectra.

In this paper we implemented support for two gen-
eral features that are useful for analysis of realistic data,
namely constrained realizations and template sampling.
The former is useful whenever there are gaps in the data,
for instance due to an instrumental glitch, or there are
strong localized sources in the sky that may bias the
noise estimate: In these cases, the gaps are refilled with
a constrained noise realization with the appropriate noise
parameters, such that the full time stream represents a
proper sample from a Gaussian distribution with a noise
covariance matrix, N. Since the time stream no longer
contains gaps, the Toeplitz symmetry of the noise covari-

ance matrix is restored, and matrix multiplications may
be performed quickly in Fourier space.

The second operation, template sampling, is also a
powerful and versatile technique for mitigating system-
atic errors. In this paper we mostly focused on data
from the QUIET experiment, for which ground pickup
from sidelobes is one significant source of systematics
(QUIET 2011). In a future publication we will apply the
same method to simulations of the Planck experiment,
for which cosmic ray glitches is an important source of
systematic errors. As detailed by Planck (2011b), these
cosmic rays may be modeled in terms of a limited set
of time domain templates, and the algorithms presented
in this paper should therefore prove useful for mitigating
the effects of these glitches, as well as for propagating the
corresponding uncertainties into the final noise spectrum
parameters.

We thank the QUIET collaboration for stimulating dis-
cussions. The computations presented in this paper were
carried out on Titan, a cluster owned and maintained by
the University of Oslo and NOTUR. This project was
supported by the ERC Starting Grant StG2010-257080.
Some of the results in this paper have been derived using
the HEALPix (Górski et al. 2005) software and analysis
package.
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Górski, K. M., Hivon, E., Banday, A. J.,Wandelt, B. D., Hansen,

F. K., Reinecke, M., Bartelman, M. 2005, ApJ, 622, 759
Hinshaw, G., et al. 2003, ApJS, 148, 63
Hoffman, Y., & Ribak, E. 1991, ApJ, 380, L5
Komatsu, E., et al. 2011, ApJS, 192, 18
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1

Liu, J. S., Monte Carlo Strategies in Scientific Computing,
Cambridge, USA: Springer, 2001,

Planck Collaboration 2011, A&A, submitted, [1101.2022]
Planck HFI Core Team 2011, A&A, submitted, [1101.2048]
Prunet, S., et al. 2001, in MPA/ESO/MPA conf. Proc. ”Mining

the Sky”, [astro-ph/0101073]
QUIET Collaboration 2011, ApJ, in press, [1012.3191]
Tauber, J. A., et al. 2010, A&A, 520, A1
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004,

Phys. Rev. D, 70, 083511



194



Paper IV

Application of the Kolmogorov-Smirnov test to CMB data: Is the universe really
weakly random?

S. K. Næss
A&A, Volume 538, pp. A17 (2012)

195



Astronomy & Astrophysics manuscript no. kolmogorov2 c© ESO 2011
May 26, 2011

Application of the Kolmogorov-Smirnov test to CMB data:
Is the universe really weakly random?

Sigurd K. Næss

Institute of theoretical Astrophysics, University of Oslo, P.O.Box 1029 Blindern, 0315 Oslo, Norway

Preprint online version: May 26, 2011

Abstract

A recent application of the Kolmogorov-Smirnov test to the WMAP 7 year W-band maps claims evidence that the
CMB is “weakly random”, and that only 20% of the signal can be explained as a random Gaussian field. I here repeat
this analysis, and in contrast to the original result find no evidence for deviation from the standard ΛCDM model.
Instead, the results of the original analysis are consistent with not properly taking into account the correlations of the
ΛCDM power spectrum.
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1. Introduction

In astronomical data analysis, it is often useful to be able
to test whether a set of data points follows a given dis-
tribution or not. For example, many analysis techniques
depend on instrument noise being Gaussian, and to avoid
bias, one must check that this actually is the case. There are
many different ways in which two distributions can differ,
and correspondingly many different ways to test them for
equality. The simplest ones, such as comparing the means
or variances of the distributions, suffer from the problem
that there are many ways in which distributions can differ
that they cannot detect no matter how many samples are
available. For example, samples from a uniform distribution
can easily pass as Gaussian if one only considers the mean
and variance.

The popular Kolmogorov-Smirnov test (K-S test) re-
solves this problem by considering the cumulative distribu-
tion functions (CDF) instead: Construct the empirical CDF
of the data points and find its maximum absolute difference
K from the theoretical CDF. Due to the limited number of
samples, the empirical CDF will be noisy, and K will there-
fore be a random variable with its own CDF, which in the
limit where the number of samples goes to infinity is given
by

P (x < K) = FKS(
√
NobsK) (1)

with

FKS(x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2
. (2)

In contrast with the simplest tests, this test can detect any
deviation in the distributions, but may require a large num-
ber of samples to do so, especially in the tails of the distri-
bution.

Recently, a series of papers (Gurzadyan et al. 2011;
Gurzadyan & Kocharyan 2008; Gurzadyan et al. 2010)

has applied this test to WMAP’s cosmic microwave back-
ground (CMB) maps, resulting in the remarkable claim
that the CMB is “weakly random”, with only 20% of the
CMB signal behaving as one would expect from a ran-
dom Gaussian field. This result went on to be used in
a much discussed series of papers (Gurzadyan & Penrose
2010a,b, 2011) claiming a strong detection of concentric
low-variance circles in the CMB, which was taken as evi-
dence for Conformal Cyclic Cosmology. Other groups failed
to significantly detect the circles (Wehus & Eriksen 2010;
Moss et al. 2011; Hajian 2010). The difference in signif-
icance was due different CMB models: Wehus & Eriksen
(2010); Moss et al. (2011); Hajian (2010) used realizations
of the best-fit ΛCDM power spectrum, while Gurzadyan &
Penrose (2010b) used a “weakly random” CMB model.

Both in order to resolve this issue, and because a weakly
random universe would be a strong blow against the ΛCDM
model in its own right, it is important to test this result.

2. Method

Before applying the K-S test, one must be aware of its lim-
ited area of validity: Equation (1) requires an infinite num-
ber of independently identically distributed samples, while
CMB maps actually consist of a limited number of corre-
lated samples. However, both the correlations and number
of samples can be compensated for, as we shall see.

2.1. Application of the K-S test to correlated data

Though the K-S test is not immediately applicable to a
correlated data set, it is possible to perform an equivalent
test on a transformed set of samples. The question we are
trying to answer with the K-S test is “Do the samples follow
the theoretical distribution?”. The truth or falseness of this
is preserved if we apply the same transformation to both
the samples and the distribution we test them against, and
to be able to use the K-S test, the logical transformation
to use is a whitening transformation, which results in an
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Figure 1. ΛCDM two point correlation function after
applying the WMAP W-band beam and the HEALPix
(Górski et al. 2005) nside 512 pixel window.

independent, identical distribution for the samples. With
original samples d with covariance matrix C, the whitened
(uncorrelated with unit variance) samples r are given by:

r = C−
1
2 d (3)

Thus, to test whether the data points d← N(0,C), we can
test the equivalent hypothesis r← N(0,1).

In the case of CMB maps, both the data itself and the
noise is expected to be Gaussian, so the obvious theoretical
distribution here is N(0,S + N), where the CMB signal
covariance matrix S is given by the two-point correlation
function:

Sij =
∞∑
l=0

√
2l + 1

4π
ClBlPl(cos(|pi − pj|)) (4)

Pl(x) are the Legendre polynomials normalized to 1
2π , and

pi and pj are the direction vectors for pixel i and j in the
disk. Cl is the ΛCDM angular power spectrum, while Bl
accounts for the beam and pixel window. N is instrument
dependent, but for the WMAP W-band CMB map we will
use here, the noise is nearly diagonal, and given by the
corresponding W-band RMS map.

2.2. Application of the K-S test with few samples

The other problem we need to account for is our finite
number of samples. In this case equation (1) is only ap-
proximate. For most uses of the test, this approximation is
good enough, especially when employing analytical expres-
sions for improving the quality of the approximation for low
numbers of samples (von Mises 1964). For example, when
performing a single test to accept or reject a test distribu-
tion, a bias of a few percent in the confidence with which
the hypothesis is rejected is not important.

However, when making statistics for a large number of
such test results, such a bias may make the results ambigu-
ous. Given a set of experiments with a corresponding set of
maximum deviations {Ki}, the corresponding probabilities
{pi = P (x < Ki)} should be uniformly distributed if the
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Figure 2. When applying the K-S test to samples known
to come from the correct distribution, the resulting val-
ues {pi = P (x < Ki)} should be uniformly distributed,
but when working with a limited number of samples,
the Kolmogorov distribution is only approximate, and the
actual CDF of the results, G(p), differs from the ideal
G∞(p) = p. This is shown in the upper panel for the case
of 540 samples per experiment, where G(p) is the solid line
and G∞(p) is dashed. The lower panel shows the deviation
between the two, which is of the order of 1% in this case
(but larger with fewer samples).

samples actually follow the theoretical distribution, and a
histogram of {pi} should therefore be flat. Deviations from
this indicate that the theoretical distribution does not ac-
curately describe the samples. However, the approximate
equation (1) also introduces a small non-uniformity in {pi}
even if the samples actually do follow the distribution. To
avoid the ambiguity this causes, we will instead compute a
numerical correction function mapping the approximate p
to the true p′. 1

To build up the correction, we simulate a large number2
of experiments, each with the same number of samples as
the actual data set, but drawn directly from the theoretical
distribution. Thus, for these, {pi} should be uniform, with a
CDF of G∞(p) = p. However, since equation (1) is inexact,
for small numbers of samples, the actual CDF is G(p) 6=
G∞(p). The mapping between the approximate p and true
p′ is given by G(p) = G∞(p′) ⇒ p′ = G−1

∞ (G(p)) = G(p).
Thus, for a limited number of samples

P (x < K) = G(FKS(
√
NobsK)). (5)

Figure 2 illustrates the correction function for 5 · 106 simu-
lations of 540 each. For this many samples, the correction
is only of the order of 1%.

1 What we do here is essentially replacing the analytical
Komolgorov distribution (equation (1)) with a numerical dis-
tribution. This could also be done without using the analytical
distribution as a basis, at a small cost in clarity.

2 The number necessary depends on the level of accuracy
desired. The noise in the estimate of G(p) propagates to the
final results. To make this a subdominant noise contribution,
the number of simulations should be at least as large as the
number of actual experiments, preferably much higher.
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Figure 3. A randomly selected disk before (left) and after
(right) the whitening operation. The samples are strongly
correlated and thus unsuitable for the K-S test before the
transformation, but afterwards no correlations are visi-
ble and the variance is 1. Note that whitening the data
does not mean that we are “forcing” the K-S test to pass.
The whitened data will only end up matching N(0, 1) af-
ter whitening if they followed our theoretical distribution
N(0,C) before.

3. Does ΛCDM fail the K-S test?

With this in hand we can finally apply the K-S test on CMB
data. Following Gurzadyan et al. (2011), we randomly pick
10 000 disks with a radius of 1.5 degrees from the WMAP
7 year W-band map (Jarosik et al. 2011), with the region
within 30 degrees from the galactic equator excluded. Each
disk contains on average 540 pixels, which are whitened us-
ing equation (3). A typical disk before and after the whiten-
ing operation can be seen in Fig. 3. After whitening, the
values should follow the distribution N(0, 1) if our model
is correct.

The histogram of resulting probabilities {pi = P (x <
Ki)} from of applying equation (5) to the hypothesis r ←
N(0,1) is shown in Fig. 4, together with the 68% and
95% intervals from 300 simulations. The data and simu-
lations are consistent, and follow a uniform distribution as
expected3: The CMB map is fully consistent with ΛCDM
+ WMAP noise as far as the K-S test is concerned.

This is dramatically different from the curve found by
Gurzadyan et al. (2011), which was strongly biased towards
low values. Low values of P (x < K) would mean that the
empirical CDF of the samples matches the theoretical one
too well, i.e. even better than samples drawn directly from
the theoretical distribution.

What could cause Gurzadyan et al. to get results so dif-
ferent from ours? One way biasing P (x < K) low is by bas-
ing the parameters of your test distribution on the values
themselves. However, even without doing this, it is possible
to get low values if the values used in the K-S test are cor-
related. This is also consistent with the presentation given
by Gurzadyan et al. (2011) who apparently applied the K-S
test directly to the raw samples d, or equivalently, that they
model the pixel values as coming from a 1-dimensional dis-

3 It should be noted that the histogram bins are not com-
pletely independent for two reasons: Firstly, some disks are go-
ing to overlap, meaning that the same samples enter into several
different K-S tests, and secondly, while our transformation has
made the samples within each disk independent, the correlation
between different disks is still present.
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Figure 4. Histogram of results of the K-S test. Each panel
compares the results from properly taking the correlations
into account (solid line) with those one gets from ignor-
ing them (dashed line), together with 68% and 95% inter-
vals (dotted lines) from simulations. The upper panel corre-
sponds to using samples further than 30 degrees away from
the galactic equator, while the lower panel instead uses the
WMAP KQ85 analysis mask. In both cases, both the map
and the simulations pass the K-S test when taking the cor-
relations into account, while if the are ignored, the K-S test
fails in the same way Gurzadyan et al. (2011) reported.

tribution. To check this, I repeated the analysis, this time
using the theoretical distribution d ← N(µ, σ2), where µ
and σ2 are the measured mean and variance of the samples
in the disk. The result is also shown in Fig. 4. This time,
the bias towards low values is clearly recreated.

It therefore seems likely that Gurzadyan et al.’s re-
ported “weak randomness” is the result of not properly tak-
ing the CMB’s correlations into account. One is, of course,
free to use whatever distribution one wants as the theo-
retical distribution in a K-S test, even a model where the
CMB pixels are independently identically distributed, with
no correlations at all. The problem lies in the interpreta-
tion of the test results. For Gurzadyan et al. (2011), the K-S
test results are clearly not uniform, indicating that the cho-
sen theoretical distribution has been disproven. However,
Gurzadyan et al. then go on to create a set of simulations
(linear combinations of 20% Gaussian and 80% static sig-
nal) that fail the test in the same way as the WMAP map
does. But having two sets of samples fail the K-S test the
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same way does not prove that they have the same proper-
ties. It simply means that the chosen test distribution was
a poor choice.

4. Kolmogorov maps

While Gurzadyan et al.’s Kolmogorov statistics are bi-
ased by not taking the correlations into account, the ap-
proach of making sky maps of K-S test results introduced in
Gurzadyan et al. (2009) is still an interesting way to search
for regions of the sky that do not follow the expected dis-
tribution. Making an unbiased Kolmogorov map straight-
forwardly follows the procedure in Sect. 3, with the main
difference being the selection of pixels. Instead of randomly
selecting disks, we now systematically go through nside 16
pixels, using the 1024 nside 512 subpixels inside each one
as the samples. These are then tested against N(0,C) by
whitening them via equation (3) and then comparing the
whitened samples to N(0, 1).

The result is the nside 16 map of P (x < K) shown in
Fig. 5. Regions that pass the test have a value uniformly
distributed between 0 and 1, and we see that this applies
to the CMB-dominated areas of the sky, while areas domi-
nated by the galaxy fail the test as expected.

For comparison, Fig. 5 also includes the result of mak-
ing the same map while ignoring correlations. In this case,
the whole sky fails the test: The CMB-dominated areas are
biased low, while the galaxy is biased high. This map is sim-
ilar to the map in Gurzadyan et al. (2009), which is also
too low outside the galaxy, and too high inside, which is,
again, consistent with Gurzadyan et al. applying the K-S
test directly to the raw samples.

5. Summary

The Kolmogorov-Smirnov test is a useful and general way
of testing whether a data set follows a given distribution or
not. However, it only applies to independently identically
distributed samples. The CMB is strongly correlated, and
thus not immediately compatible with the test. However,
this can be resolved by the application of a whitening trans-
formation, replacing the hypothesis d← N(0,C) with the
equivalent C−

1
2 d ← N(0,1). With this, we find that the

ΛCDM passes the K-S test. This is incompatible with the
original analysis by Gurzadyan et al. (2011), which claimed
detection of an unknown non-random component making
up 80% of the CMB based on the CMB failing the K-S test
there. It turns out that this analysis did not take the CMB
correlations into account, which we confirm by producing
the same failure of the K-S test when we skip the whitening
step. When the correlations are handled properly, there is
no need for a weakly random universe.
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