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ABSTRACT

Beam characterization is of critical importance when analyzing and interpreting data from Cosmic Microwave
Background (CMB) experiments. In this paper we present scanning strategies, data analysis methods and
results of the 44 GHz (Q-Band) beam characterization for the Q/U Imaging ExperimenT (QUIET) Phase-
I, using the Crab nebula (Tau A) and Jupiter as polarized and unpolarized point sources, respectively. The
beams are modeled as a sum of gaussian terms multiplied by orthogonal polynomials after symmetrization using
observations taken at different rotation angles about the optical axis. The ℓ-space window function calculation
procedure is explained and applied, along with the corresponding propagation of parameter uncertainty. These
window functions encode the effect of the finite resolution of the instrument on its ability to measure the angular
power spectrum, as a function of multipole ℓ. Additionally, the instrumental polarization is characterized in terms
of two-dimensional Mueller fields which describe the coupling of the Stokes parameters. The data presented in
this work were collected during the first season of QUIET observations that started in October 2008.
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1. INTRODUCTION

The primary scientific motivation of QUIET is to make precision measurements of the CMB polarization with the
ultimate goal of detecting in it patterns imprinted by gravitational waves from a primordial epoch of inflation.
The polarization can be separated into E-modes and B-modes based on symmetry properties;1–3 the B-modes
at large angles only arise from gravity waves. All of these signals are very faint and require a combination of an
extremely sensitive detector system and exquisite control and/or characterization of systematic effects.

The QUIET receivers measure simultaneously the Q and U Stokes linear polarization parameters of the CMB,
as well as its temperature anisotropies. QUIET consists of two phases; Phase-I is currently ongoing and has
carried out observations at 44 GHz (Q-Band) and 95 GHz (W-Band), while Phase-II is being developed and
expected to continue and improve Phase-I results. Hereafter QUIET refers to QUIET Phase-I unless otherwise
noted.

In this paper we describe the measurement of the 44 GHz beam shapes and characterization of the corre-
sponding window functions for both the total power (temperature) and polarization beams. The measurements
and characterization of the 95 GHz system are underway and will follow the general procedure outlined below.
Other papers in these proceedings provide an overview of the QUIET instrument,4 the QUIET polarization
modules5 and the responsivity characterization.6

2. OPTICAL DESIGN

The QUIET optical design incorporates a side-fed Dragonian antenna7 which uses a 1.4 m paraboloidal primary
mirror and concave hyperboloidal secondary mirror, Figure 1 (left). These combine to generate a wide field
of view with excellent polarization characteristics and minimal beam distortion. The Q-Band receiver, which
operated during the first season of Phase-I, consists of 19 module elements from which two are dedicated to
measurement of CMB temperature anisotropies and all the rest to polarization detection. The W-Band receiver,
currently being used, has a total of 90 module elements out of which six are dedicated to temperature. In
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Figure 1. Left: Dragonian antenna during assembly tests. It uses a 1.4 m paraboloidal primary and concave hyperboloidal
secondary aluminum mirrors. The Q-Band receiver was also installed during this test, visible on the right under the flag.
The primary is facing upward. Right: Q-Band corrugated feedhorn platelet array. The horns corresponding to the TT
modules are in the lowest row; horn 17 is at the center of the row and horn 18 is at the right corner.

both cases, polarization and temperature modules have four readout channels, Q1, Q2, U1 and U2 nominally
measuring +Q, -Q, -U and +U.

The first block in the receiver corresponds to a corrugated feedhorn array, Figure 1 (right), that couples the
radiation coming from the antenna to a septum polarizer8 which splits the left and right circular polarizations
before they are fed into the polarimeter modules.5 Corrugated feeds offer the combination of broad bandwidth
and low cross polarization necessary to minimize the systematic effects that can be introduced by instrumental
polarization. They also provide symmetric beams with low sidelobes, resulting in minimal spillover. Since
standard electroformed corrugated feeds are prohibitively expensive, a low cost option using platelet arrays∗

of corrugated feedhorns was used.9 QUIET is the first CMB experiment to use either the side-fed Dragonian
antenna or platelet arrays. Pictures of the antenna and Q-Band platelet array are shown in Figure 1. Large
absorbing ground shields,4 which were installed once the antenna was placed on its three-axis mount, are not
shown in this figure.

3. OBSERVATIONS AND PRELIMINARY DATA REDUCTION

3.1 JUPITER

Jupiter is used as a beam mapping and calibration source for the two temperature modules (hereafter TT
modules) of the Q-band array. It was observed with azimuth scans at constant elevation with an amplitude (half
amplitude) between 3◦ and 6◦.

The TT modules output temperature differences such as T a
17−T b

18, where the subscripts denote two feedhorns,
separated on the sky by 1.75◦, and the superscripts denote two orthogonal linear polarization states from those
feedhorns. Module 17 outputs both T a

17 − T b
18 and T b

18 − T a
17, on the detectors Q1 and Q2. Module 18 outputs

T b
17 − T a

18 and its negative. Thus each observation of Jupiter results in eight beam maps from two feedhorns at
the edge of the array, as seen in Figure 1 (right).

Figure 2 shows a section of a raw map from detector Q1 of module 18 in instrumental coordinates (x, y) for
a single observation. These coordinates represent angular distances on the sky with the origin at the location of
the beam for the horn being analyzed, such that x is parallel to the row of feedhorns as seen in Figure 1 (right).
It is easy to observe in Figure 2 the differential beam patterns corresponding to horns 17 and 18 respectively.

For the analysis presented here we use a total of 10.8 hours of data taken during the first season of the
experiment, not including one compromised by bad weather conditions. When analyzing these observations

∗Platelet arrays comprise layers of plates bonded together, each machined with one to several of the corrugations for
each of the elements of the array.
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Figure 2. This figure shows the resulting double beam map when observing Jupiter with the TT modules.

individually it is necessary to remove their signal baseline in order to compensate for the 1/f noise from the
receiver and atmosphere, that however small, could bias the final results. The most practical way of doing it
is by pre-pixelizing the raw map with a convenient resolution of 0.03◦×0.03◦, blanking out the region where
the beams lie up to a radius of 0.75◦, or 3.75 times the expected gaussian width of the beam (beam width
hereafter), and calculating the mean signal offset at each y-step, which is then removed. The data are coadded
in instrumental coordinates after applying the gain model discussed in Dumoulin et al. (2010).6 Finally the
amplitude of each map is normalized to unity, leaving them ready for the analysis of Section 4.

3.2 CRAB NEBULA

Tau A (Crab Nebula) is the brightest polarized extrasolar radio source, and is therefore broadly used as cal-
ibrator by CMB experiments.10 It was scanned with purposes of responsivity calibration, polarization angle
identification and beam characterization for the polarization detectors. The analysis presented here focuses on
beam characterization for the central horn of the array since most of the observations concentrated on this horn.
Additional measurements were performed on other horns to check predicted trends in critical beam parameters.

The data considered in the analysis correspond to observations taken between November 2008 and May
2009 that amount to 18 hours of raster scans carried out at different rotation angles about the optical axis,
or boresight orientations, with amplitude of approximately 0.9◦ on the sky. For every observation, the baseline
offset is eliminated by fitting and removing a y-dependent plane, after blanking out the area where the beam is
located up to a radius of 0.75◦, as in the Jupiter case. The gain model from Dumoulin et al. is applied to the
data which are then concatenated and binned in instrumental coordinates with pixel size of 0.03◦×0.03◦. The
most important aspect of this pixelization is that due to the scanning strategy, within each pixel centered at n̂
we have data points taken at different angles η, which incorporates the parallactic angle of the measurement,
the boresight orientation angle and the polarization angle of the detectors as established from measurements of
the Moon. The response of the Q and U detectors can then be described in the following way:

Q(n̂, η) = R · Γ · Isrc {mQI(n̂) + p · mQQ(n̂) · cos(2[γPA − η]) + p · mQU (n̂) · sin(2[γPA − η])}
U(n̂, η) = R · Γ · Isrc {mUI(n̂) + p · mUU (n̂) · sin(2[γPA − η]) + p · mUQ(n̂) · cos(2[γPA − η])} (1)

where R is the responsivity of the receiver6 [V K−1], Γ is the telescope sensitivity [K Jy−1], Isrc=317.7 [Jy] is the
flux density of Tau A from Wieland et al. (2010),10 γPA=150.7◦ is the position angle of Tau A10 and p=0.0697
is the polarization fraction of Tau A.10 We thus obtain simultaneously the value of the two-dimensional Mueller
fields at position n̂ from a linear least squares fit. The mQI Mueller field represents the coupling of the sky
Stokes parameter I into the measured Q.11,12 The definition of the other Mueller fields is analogous.

The Mueller fields are related to various combinations of the co- and cross-polar, E- and H-plane beam
patterns.12 The characterization of these maps is carried out differently for the polarization beams (contained



in mQQ and mUU ) and the leakage beams (mQI , mUI , mQU and mUQ) due to the nature of the information we
want to extract. In the first case we are interested in parameters such as beam elongation, rotation angle, axially
symmetric profile and window function, whereas for the leakage beams a two-dimensional shapelet13 modeling
is of particular interest, in order to quantify the relative contribution of the monopole, dipole and quadrupole
term to the beam distortions.14

The mQI and mUI fields are of particular concern to precision CMB polarization measurements because they
can give rise to a false polarization signal, while the mQU and mUQ fields can change the nominal instrument
polarization axis that is fixed by the septum polarizer.

4. TOTAL POWER BEAMS AND WINDOW FUNCTIONS

The beams contained in the final normalized maps of Section 3.1 are modeled as two-dimensional elliptic gaussians
oriented at any angle. We define a coordinate system with axes (µ̂, ν̂) fixed to the ellipse such that its semimajor
axis is aligned with µ̂, and free to rotate an angle χ counterclockwise from +x̂, the positive half of the horizontal
axis in instrumental coordinates. In these rotated coordinates we define the beam widths σµ and σν , where
clearly σµ ≥ σν . The two-dimensional elliptic beam model is therefore:

b2d(x, y) = exp

(

− 1

2σ2
µ

[x cos χ + y sinχ]
2 − 1

2σ2
ν

[−x sin χ + y cos χ]
2

)

. (2)

This model serves us primarily to quantify the elongation and rotation angle of the beams and check their

consistency. The elongation, defined here as ǫ =
(σµ−σν)
(σµ+σν) × 100%, is expected to be low in every case, and given

our CMB scanning strategy that includes natural sky rotation as well as artificial telescope boresight rotation,
it is appropriate to describe the beam as a one-dimensional axially symmetric profile, whose main parameter is
a single effective beamsize.15 Defining the normalized temperature beam map in polar coordinates as T (θ, φ),
where θ and φ are the distance from the beam center and the polar angle respectively, the expression to compute
the symmetric profiles is:16

bd
s(θ) =

∫

dφ′T (θ, φ′)
∫

dφ′
. (3)

This symmetric beam is modeled as a series expansion of Gauss-Hermite functions, a particular one-dimensional
application of the shapelet decomposition method,13 with the equation

bm
s (θ) = exp

(

− θ2

2σ2
s

) mh
∑

i=0

a2iH2i

(

θ

σs

)

(4)

where σs is the symmetric gaussian beam size and H2i is the Hermite polynomial of order 2i. This expansion is
needed in order to parameterize the deviations from gaussianity of the beam, that appear significantly beyond
an angular distance of two times the expected beamsize, or 0.4◦ in this case. From shapelet theory we know that
there is not a unique value of σs (in general called scale size) that best describes the data using Equation 4, as
long as the chosen one is within a reasonable range.17–19 We choose σs as the gaussian beam width of the main
lobe by fitting with mh = 0 for angles |θ| < 0.4◦. Note that we only use even Hermite functions in the expansion
since we are assuming a symmetric beam.

With this beam profile model we approach the window function calculation procedure following the outline
found in Page et al. (2003),15 where the Legendre transform of the beam, bℓ, is related to the window function
by wℓ = b2

ℓ . This transform is defined as

bℓ =
2π

ΩB

∫

bm
s (θ)Pℓ(cos θ)d(cos θ) ≡ Bℓ

ΩB

(5)

where Pℓ corresponds to the Legendre polynomial of degree ℓ and ΩB is the main beam solid angle. We can
simplify the integration by writing



Table 1. Basic beam and telescope parameters obtained from the TT channels using Jupiter as calibration source. The
eight cases are classified by module, horn and detector. The values presented are beam elongation ǫ, rotation angle χ,
symmetric FWHM, integrated main beam solid angle ΩB , telescope gain Gm and conversion factor Γ. The errors quoted
here do not explicitly account for uncertainties in the gain or pointing model.

ǫ [%] χ [deg] FWHM [deg] ΩB [µsr] Gm [dBi] Γ [µK Jy−1]
value error value error value error

m17/h17/Q1 1.5 0.3 86 6 0.460 0.002 80.7 51.9 208.6
m17/h17/Q2 1.6 0.3 83 6 0.456 0.002 79.5 52.0 211.8
m17/h18/Q1 2.3 0.3 90 4 0.457 0.002 78.6 52.0 214.2
m17/h18/Q2 1.4 0.3 89 6 0.457 0.002 78.3 52.1 215.1
m18/h17/Q1 0.6 0.3 77 14 0.450 0.002 77.4 52.1 217.6
m18/h17/Q2 0.7 0.3 46 12 0.453 0.002 78.0 52.1 215.9
m18/h18/Q1 1.2 0.3 85 7 0.460 0.002 79.8 52.0 210.9
m18/h18/Q2 1.7 0.3 93 5 0.460 0.002 80.4 51.9 209.4

Bℓ =

mh
∑

i=0

a2iBℓi, (6)

where

Bℓi = 2π

∫ π

0

e
−

θ2

2σ2
s H2i

(

θ

σs

)

Pℓ(cos θ) sin θdθ. (7)

This last integration is carried out for each expansion term (i = 0, 1, ..,mh) up to a value of ℓ = 700,
sufficiently higher than our sensitivity range, which is about 25-400 for Phase-I Q-band. Finally we calculate the
linear combination of Equation (6) using the Hermite coefficients extracted previously, and the transfer function
is obtained using the normalization bℓ = Bℓ/Bℓ=0.

The fractional uncertainties in the window functions are related to the ones in the transfer functions bℓ by
∆wℓ/wℓ = 2∆bℓ/bℓ, so it is necessary to calculate ∆bℓ by propagating the uncertainties from the covariance
matrix of the Hermite coefficients, Caa′

ij , using

ΣB
ℓℓ′ =

mh
∑

i,j=0

BℓiC
aa′

ij Bℓ′j , (8)

which allows us to write the covariance matrix of the transfer function bℓ as

Σb
ℓℓ′ =

mh
∑

i,j=0

∂bℓ

∂a2i

Caa′

ij

∂bℓ′

∂a2j

=
1

(Bℓ=0)2
(

ΣB
ℓℓ′ + bℓbℓ′Σ

B
00 − bℓΣ

B
0ℓ′ − bℓ′Σ

B
ℓ0

)

, (9)

from where we finally get ∆bℓ =
(

Σb
ℓℓ

)
1

2 , the diagonal elements plotted in Figures 3 and 4.

The a2i coefficients and their covariance matrix are computed using the least squares minimization method.
To find out how many terms to use in the Gauss-Hermite expansion we carry out a reduced-χ2 comparison,
where the effect on the goodness of fit of the inclusion of every additional term is quantified. Even though mh=6
noticeably improves the reduced-χ2 compared to the pure gaussian case (mh=0), we decide to use mh=10 since
at that level the trend has been settled for both, the present total power profiles and the polarization profiles
analyzed next. Therefore, the orders of the Hermite polynomials in the symmetric beam model of Equation 4
are 0, 2, 4,...20, eleven terms total.

With all these specifications we carry out the analysis and obtain the results presented in Table 1 and Figure 3.
From the table we see that the beam elongation has an average value of 1.4%, and the associated rotation angles
indicate that the beams are consistently aligned almost vertically, except for the cases with the smallest ellipticity
where the uncertainty of the angle is correspondingly higher, in particular the m18/h17/Q2 case that with a



Table 2. Basic beam and telescope parameters extracted from the mQQ and mUU Mueller maps using Tau A as calibration
source, for the Q and U detectors of the central polarization module. The values presented are beam elongation ǫ, rotation
angle χ, symmetric FWHM, integrated main beam solid angle ΩB , telescope gain Gm and conversion factor Γ. The errors
quoted here do not explicitly account for uncertainties in the gain or pointing model.

ǫ [%] χ [deg] FWHM [deg] ΩB [µsr] Gm [dBi] Γ [µK Jy−1]
value error value error value error

Q 2.0 0.6 125 9 0.448 0.003 73.7 52.3 228.4
U 1.0 0.6 58 16 0.456 0.004 70.4 52.5 239.3

rotation angle of 46±12◦ lies outside the trend presented by the seven other cases but has an elongation of 0.7%.
The table additionally shows the FWHM of the symmetrized beam, defined as FWHM=

√
8 ln 2σs, the beam solid

angle ΩB obtained by integrating the final Jupiter maps up to θ=0.9◦, the telescope gain Gm = 10 log10

(

4π
ΩB

)

and the conversion factor depending on the calculated solid angles

Γ

[

µK

Jy

]

=
10−20c2

2kbν2
eΩB

, (10)

where νe=44 GHz corresponds to the effective observing frequency.

5. POLARIZATION BEAMS AND WINDOW FUNCTIONS

5.1 Polarization Beams

In this section we carry out the same procedure that the one used in the total power case to analyze the main
beams contained in the two-dimensional mQQ and mUU Mueller maps obtained from Equations 1 and the axially
symmetric profiles generated from them, so there is no need for further development. The same beam models
apply, as well as the window function calculation method, obtaining the results of Table 2. The profiles and
window functions are presented in Figure 4, and the fitted two-dimensional beams are shown as contour plots in
Figure 6 (first column), along with the leakage maps explained next. The Q and U data we use in this section
corresponds to the detector pair (Q1,U1). Similar results are obtained when (Q2,U2) are used.

5.2 Leakage Beams

Non-idealities in the instrument can produce a leakage of the total intensity into the polarization signals causing
CMB temperature anisotropy to leak into the polarization, an effect defined as I→Q/U leakage. Similarly,
non-idealities in the instrument can rotate its polarization axis away from the nominal axis set by the septum
polarizer giving rise to Q↔U leakage. These effects can be quantified by the previously described Mueller leakage
beams mQI , mUI , mQU and mUQ, which therefore need to be properly characterized.

For this purpose we model the data with a two-dimensional shapelet expansion in terms of Gauss-Hermite
functions in cartesian coordinates, equivalent to the one-dimensional model used for the symmetrized beam
profiles. In this case however, since there are no parity requirements for the basis functions, i.e., they do not
need to be symmetric about x=0 or y=0, it is possible to use all the desired consecutive integers in the expansion.
Just like in the one-dimensional case, the scale size is chosen to be the size of the main beam obtained from
the axially symmetric profile presented in Table 2, implying that the whole set of extracted coefficients is only
meaningful under those conditions.

The normalized basis functions are defined as:

fi,j(x, y) =
[

2i+jπi!j!σ2
s

]−
1

2 Hi

(

x

σs

)

Hj

(

y

σs

)

e
−

1

2σ2
s
(x2+y2)

, (11)

but it is more convenient if we simplify the nomenclature defining:



Table 3. Expansion coefficients of Equation 13 and their uncertainties.

mQI error mUI error mQU error mUQ error
×10−3

×10−3
×10−3

×10−3
×10−3

×10−3
×10−3

×10−3

d1 -2.4 0.1 0.9 0.1 26 2 -27 2

d2 0.7 0.1 0.6 0.1 -7 2 4 2
d3 0.04 0.1 -0.09 0.1 -2 2 1 2
d4 -0.6 0.1 0.02 0.1 -4 2 -5 2
d5 0.7 0.1 -0.4 0.1 3 2 -4 2
d6 0.2 0.1 -0.4 0.1 2 2 -3 2

Ψ1 = f0,0, Ψ4 = f1,0

Ψ2 = f0,1, Ψ5 = f2,0

Ψ3 = f0,2, Ψ6 = f1,1. (12)

The number of expansion terms is chosen to be six since this set includes all the critical terms that we want
to examine, and also because beyond that value the χ2 does not improve noticeably. With this formulation we
write the leakage beam model as:

bleak(x, y) =

6
∑

i=1

diΨi(x, y). (13)

The di coefficients are computed taking advantage of the orthonormality between the basis functions, and the
calculation of their covariance assumes white uncorrelated noise. They are therefore given by:

di =

∫

M(x, y)Ψi(x, y)dxdy

Cdd′

ij =

∫

[N(x, y)]2Ψi(x, y)Ψj(x, y)dxdy (14)

where M represents the leakage map under analysis (mQI , mUQ, etc.) and N corresponds to its associated map

of uncertainties. Finally, in order to derive the errors in the coefficients from the covariance matrix Cdd′

ij we

follow the parameter estimation and marginalization procedure outlined in Huffenberger et al. (2004).20

The results are summarized in Table 3, where cases with |di| ≥ 3σdi
are shown in bold font, stressing the

statistically significant terms in the series. The normalized basis functions corresponding to each term in the
expansion are shown in Figure 5 and the leakage beams reconstructed using the coefficients of the table are
presented in Figure 6 along with the previously described polarization beams. The reduced-χ2 obtained when
comparing the original and reconstructed leakage beam maps are 1.15, 1.06, 1.11 and 1.09 for mQI , mUI , mQU

and mUQ respectively.

6. DISCUSSION

6.1 Main Beams

Tables 1 and 2 show the parameters corresponding to the total power and polarization main beams. All the total
power cases have a small beam elongation, with an average of 1.4%, that allows symmetrization, and the beams
are consistently aligned vertically except for the m18/h17/Q2 case that has the second lowest elongation, 0.7%.
The symmetrized FWHM is also consistent among the cases with an average of 0.456◦ and a sample standard
deviation of 0.0036◦, 1.8 times larger that the uncertainties.

The main beam solid angles calculated from the co-added maps show a sample standard deviation of 1.19
[µsr] whose origin, given the FWHM values, has to lie in the differences that occur below the -10 dB level where



the non-gaussianity arises. This can be checked by comparing the fitted linear coefficients of the one-dimensional
Gauss-Hermite expansion between all the cases.

In the polarization case, the beams have an elongation consistent with the total power beams but the rotation
angles are different, since as expected, the mQQ and mUU beams are oriented perpendicular to each other, i.e.,
there is an angle of 90◦ between them, to within the uncertainties. The FWHM of the mQQ beam is 2% smaller
than the average total power value, and mUU is practically equal to that average. However, the noticeable
difference between the polarization and total power beams is their solid angle values. For Q it is 6.8% smaller
and for U it is 10.9% smaller than the average total power case. Given the small differences in FWHM, it is
evident that the non-gaussian region of the polarization beams is driving the solid angle difference. As it can be
seen from Figures 3 (left) and 4 (left), the total power profile shows that the beam departs from gaussianity at ≈
-10dB whereas the profile of mQQ does it at ≈ -14dB, difference then reflected in the solid angle calculation. The
uncertainty propagation for the solid angles is still under study, so definitive statements about their consistency
cannot be made at this point.

6.2 Polarization Leakage Beams

For the mQI and mUI Mueller fields we are interested in quantifying the contribution from quadrupole terms
since they could induce a coupling to the local CMB anisotropy generating spurious polarization. From Equations
12 and Figure 5 we see that these terms can be represented directly by d6 or by a combination of d3 and d5

(quadrupole rotated by 45◦). Table 3 shows that d3 has no significance in either map implying that the spurious
polarization originated from a rotated quadrupole is expected to be highly suppressed. The non-rotated case
appears significantly only in mUI , with |d6| > 3σd6

. Future work will make use of the reconstructed mQI and
mUI beams in combination with WMAP temperature data in order to generate leakage maps and assess the effect
of instrumental polarization on our final CMB and galactic plane results. Finally we introduce the fractional
instrumental polarization, a practical quantity for comparing leakage content, defined as

fQI =

∫

|mQI |dΩ
∫

mQQdΩ
, fUI =

∫

|mUI |dΩ
∫

mUUdΩ
, (15)

where the integrals
∫

|mQI |dΩ and
∫

|mUI |dΩ were calculated using the reconstructed leakage beams and the
quantities in the denominator are the previously defined polarization beam solid angles ΩB for Q and U presented
in Table 2. The resulting values are 100% × fIQ=0.6% and 100% × fIU=0.35%. These results are comparable
to I→Q/U values determined during the analysis of skydip data.6

The relatively large mQU and mUQ fields determined in this analysis are due to a known offset between the
nominal instrument polarization angles as measured with the Moon and those measured with Tau A. Given that
the ratios between those leakages and the polatization beams are |mQU |/mQQ ≈ |mUQ|/mUU ≤ 0.07, as can be
easily checked from Figure 6, we find an upper bound for this detector angle phase shift of 1

2 tan−1(0.07) ≈ 2◦

in both cases.
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Figure 3. Left: Representative total power beam profile, from module 18, horn 17, detector Q2. The simpler pure gaussian
model is contrasted with the more accurate Gauss-Hermite series, presented in Equation 4. Right: Window function wℓ

and fractional uncertainties ∆wℓ/wℓ for the same case. The results for the other cases are almost identical.
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Figure 4. Left: Representative polarization beam profile, from the central module 09, detector Q. Right: Window
function wℓ and fractional uncertainties ∆wℓ/wℓ for the same case. The results for U are equivalent.

Figure 5. Normalized two-dimensional Gauss-Hermite basis used for the description of the leakage beam maps following
Equation 13.
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Figure 6. Mueller maps in instrumental coordinales generated by modelling the Tau A data with Equations 2 and 13
for main beams and leakage beams respectively. They represent the coupling of the different Stokes parameters (circular
polarization V is predicted to be zero for CMB). The contour step for the mQQ and mUU maps is 0.1, for mQI and mUI it
is 0.0007, and for mQU and mUQ it is 0.008. The relatively large mQU and mUQ fields are due to a known offset between
the nominal instrument polarization angles as measured with the Moon and those measured with Tau A.


